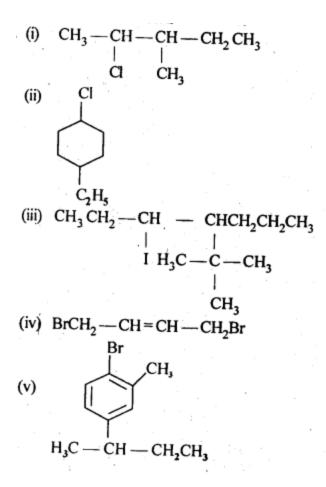
CHAPTER 6 Haloalkanes and Haloarenes


INTEXT QUESTIONS

PAGE NO: 163

Question1. Write structures of the following compounds:

- (i) 2-Chloro-3-methylpentane
- (ii) 1-Chloro-4-ethylcyclohexane
- (iii) 4-tert. Butyl-3-iodoheptane
- (iv) 1,4-Dibromobut-2-ene
- (v) 1-Bromo-4-sec. butyl-2-methylbenzene

Solution :

INTEXT QUESTIONS

PAGE NO: 167

:

Question 2. Why is sulphuric acid not used during the reaction of alcohols with KI?

Solution

KI is expected to give HI on reacting with H₂SO₄ which will convert alcohols (R – OH) to alkyl iodides (R – I). However, H₂SO₄ is a strong oxidising agent and it oxidises HI formed during the reaction to 2 which does alcohol. not react with heat $KI + H_2SO_4 \longrightarrow KHSO_4 + HI$ $H_2SO_4 \longrightarrow H_2O + SO_2 + (O)$ $2HI + (O) \longrightarrow H_2O + I_2$

To solve the problem, H2S04 is replaced by phosphoric acid (H3P04) which provides HI

for the reaction and does not give I2 as is done by H2S04.

$$KI + H_3PO_4 \longrightarrow KH_2PO_4 + HI$$

Pot. dihydrogen phosphate
 $R - OH + HI \longrightarrow R - I + H_2O$
Alcohol Alkyl iodide

Question3. Write structures of different dihalogen derivatives of propane.

Solution

There are four different dihalogen derivatives of propane. The structures of these derivatives are shown below.

.

:

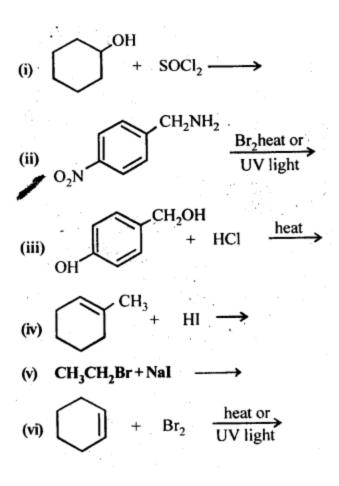
$Br - CH_2 CH_2 CH_2 - Br$	1,3-Dibromopropane
$Br-CH_2-CH-CH_3$,	1,2-Dibromopropane
Br	
Br—CH—CH ₂ CH ₃ • Br	1,1-Dibromopropane
CH ₃ -C-CH ₃	2,2-Dibromopropane
Br Br	

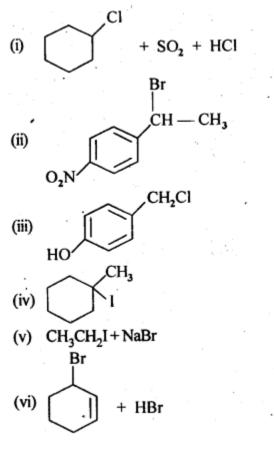
Question4. Among the isomeric alkanes of molecular formula C5H12, identify the one that on photochemical chlorination yields

(i) A single monochloride.

(ii) Three isomeric monochlorides.

(iii) Four isomeric monochlorides.


Neopentane $H_3C - C - CH_3$. As all the (i) CH₃ H-atoms are equivalent, the replacement of any one of them gives the same product.


(ii) $CH_3CH_2CH_2CH_2CH_3$ *n*-pentane. *a*, *b*, *c* are the three sets of equivalent hydrogens. Therefore, three isomeric monochlorides are possible.

(ii) $\overset{a}{CH_3} \xrightarrow{b}{-} \overset{c}{CH_2} \xrightarrow{d}{-} \overset{d}{CH_3}$ iso-pentane.

there are four sets of equivalent hydrogens Designated as a, b, c, d. Thus, four isomeric monochlorides are possible.

Question5. Draw the structures of major monohalo products in each of the following reactions:

INTEXT QUESTIONS

PAGE NO: 169

Question 28. Arrange each set of compounds in order of increasing boiling points.

(i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.

(ii) 1-Chloropropane, Isopropyl chloride, 1-Chlorobutane.

Solution

(i)For alkyl halides containing the same alkyl group, the boiling point increases with an increase in the atomic mass of the halogen atom.

Since the atomic mass of Br is greater than that of Cl, the boiling point of bromomethane is higher than that of chloromethane.

Further, for alkyl halides containing the same alkyl group, the boiling point increases with an increase in the number of halides. Therefore, the boiling point of Dibromomethane is higher than that of chloromethane and bromomethane, but lower than that of bromoform.

Hence, the given set of compounds can be arranged in the order of their increasing boiling points as:

Chloromethane < Bromomethane < Dibromomethane < Bromoform.

(ii)

For alkyl halides containing the same halide, the boiling point increases with an increase in the size of the alkyl group. Thus, the boiling point of 1-chlorobutane is higher than that of isopropyl chloride and 1-chloropropane.

Further, the boiling point decreases with an increase in branching in the chain. Thus, the boiling point of isopropyl alcohol is lower than that of 1-chloropropane.

Hence, the given set of compounds can be arranged in the increasing order of their boiling points as:

Isopropyl chloride < 1-Chloropropane < 1-Chlorobutane

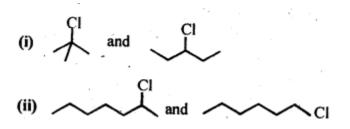
INTEXT QUESTIONS

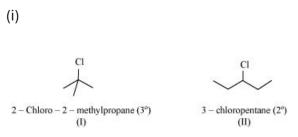
PAGE NO: 186

Question7. Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism? Explain your answer.

- (i) CH₃CH₂CH₂CH₂Br or
- CH₃CH₂CHCH₃ Br

(ii)
$$CH_3CH_2CHCH_3$$
 or $H_3C-C-Br$
Br CH_3
(iii) $CH_3CHCH_2CH_2Br$ or $CH_3CH_2CHCH_2Br$
 CH_3
(iii) $CH_3CHCH_2CH_2Br$ or $CH_3CH_2CHCH_2Br$
 CH_3
 CH_3

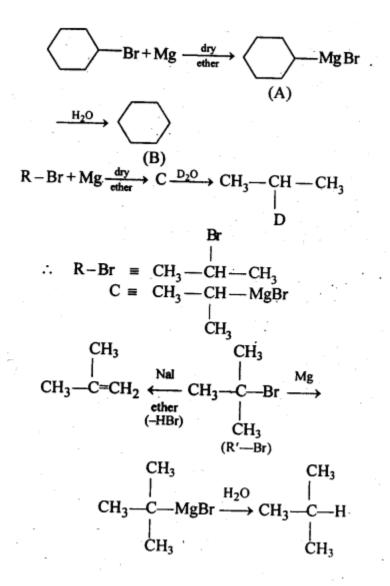

In $S_N 2$ mechanism, reactivity depends upon the steric hindrance around the C-atom carrying the halogen. Lesser the steric hindrance, faster the reaction.


- (i) CH₃ CH₂ CH₂ CH₂ Br 1° alkyl halide CH₃ CH₂ CH (Br) CH₃ 2° alkyl halide
 As steric hindrance in 2° alkyl halide is more, thus reactivity of CH₃ CH₂CH₂CH₂Br > CH₃CH₂CH (Br) CH₃
- (ii) CH₃ CH₂ CH (Br) CH₃ 2° alkyl halide (CH₃)₃ CBr 3° alkyl halide

As steric hindrance in (CH₃)₃ CBr is more, thus it is less reactive than CH₃CH₂CH (Br) CH₃

(iii) Both are 2° alkyl halides but CH₃ group at C₂ is closer to Br atom than – CH₃ group at C₃. As a result CH₃CH₂CH (CH₃) CH₂Br suffers greater steric hindrance than CH₃ CH (CH₃) CH₂CH₂Br and will thus be less reactive in S_N2.

Question8. In the following pairs of halogen compounds, which compound undergoes faster SN1 reaction?


SN1 reaction proceeds via the formation of carbocation. The alkyl halide (I) is 3° while (II) is 2°. Therefore, (I) forms 3° carbocation while (II) forms 2° carbocation. Greater the stability of the carbocation, faster is the rate of SN1 reaction. Since 3° carbocation is more stable than 2° carbocation. (I), i.e. 2–chloro-2-methylpropane, undergoes faster SN1 reaction than (II) i.e., 3-chloropentane.

(ii)

The alkyl halide (I) is 2° while (II) is 1°. 2° carbocation is more stable than 1° carbocation. Therefore, (I), 2–chloroheptane, undergoes faster SN1 reaction than (II), 1-chlorohexane.

Question9. Identify A, B, C, D, E, R and R1 in the following:

EXERCISES

PAGE NO: 189

Question 1. Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(i)(CH₃)2CHCH(Cl)CH₃ (ii)CH₃CH₂CH(CH₃)CH(C₂H₅)Cl (iii)CH₃CH₂C(CH₃)₂CH₂l (iv)(CH₃)3CCH₂CH(Br)C6H₅

```
(v)CH_{3}CH(CH_{3})CH(Br)CH_{3}

(vi)CH_{3}C(C2H_{5})_{2}CH2Br

(vii)CH_{3}C(CI)(C_{2}H_{5})CH_{2}CH_{3}

(viii)CH_{3}CH=C(CI)CH_{2}CH(CH_{3})_{2}

(ix)CH_{3}CH=CHC(Br)(CH_{3})_{2}

(x)P-CIC_{6}H_{4}CH_{2}CH(CH_{3})_{2}

(xi)m-CICH_{2}C_{6}H_{4}CH_{2}C(CH_{3})_{3}

(xii)o-Br - C_{6}H_{4}CH (CH_{3})CH_{2}CH_{3}
```

(i)2-Chloro-3-methylbutane

:

(Secondary alkyl halide)

(ii)3-Chloro-4-methyhexane

(Secondary alkyl halide)

(iii)1-lodo-2, 2-dimethylbutane

(Primary alkyl halide)

(iv)1-Bromo-3, 3-dimethyl-1-phenylbutane

(Secondary benzyl halide)

(v)2-Bromo-3-methylbutane

(Secondary alkyl halide)

(vi)1-Bromo-2-ethyl-2-methylbutane

(Primary alkyl halide)

(vii)3-Chloro-3-methylpentane

(Tertiary alkyl halide)

(viii)3-Chloro-5-methylhex-2-ene

(Vinyl halide)

(ix)4-Bromo-4-methylpent-2-ene

(Allyl halide)

(x)1-Chloro-4-(2-methylpropyl) benzene

(Aryl halide)

(xi)1-Chloromethyl-3-(2, 2-dimethylpropyl) benzene

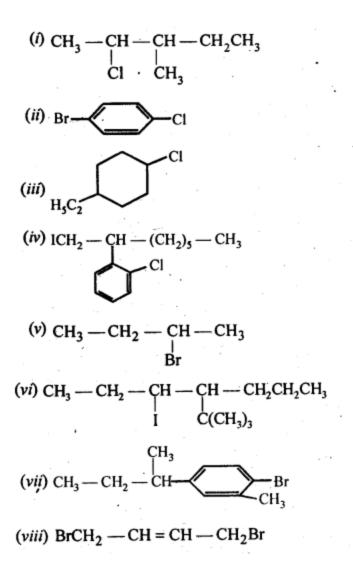
(Primary benzyl halide)

(xii)1-Bromo-2-(1-methylpropyl) benzene

(Aryl halide)

Question 2. Give the IUPAC names of the following compounds:

(i) $CH_3CH(CI)CH$ (Br)CH₃ (ii) $CHF_2CBrCIF$ (iii) $CICH_2C=CCH_2Br$ (iv) (CCl₃)₃CCl (v)CH₃C(p-CIC₆H₄)₂CH(Br)CH₃ (vi)(CH₃)₃CCH=C(CI)C₆H₄I -p

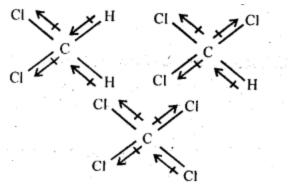

So	lution

(i)			2-Bromo-3-chlorobutane			
(ii)	1	JBromo-1	-chloro-1,2,2-trifluoroethane			
(iii)			l-Bromo-4-chlorobut-2-yne			
(iv)2-(Trio	chloromethyl)-l,	1,1,2,3,3,3-	heptachloropropane			
(v)2-Bromo-3,3-bis-(4-chlorophenyl)			butane			
(vi)I-Chloro-I-(4-iodophenyI)-3,3- dimethylbut-I-ene.						

Question3. Write the structures of the following organic halogen compounds.

- (i) 2-Chloro-3-methylpentane
- (ii) p-Bromochlorobenzene
- (iii) 1-Chloro-4-ethylcyclohexane
- (iv) 2-(2-Chlorophenyl)-1-iodooctane
- (v) Perfluorobenzene
- (vi) 4-tert-Butyl-3-iodoheptane
- (vii) 1-Bromo-4-sec-butyl-2-methylbenzene
- (viii) 1,4-Dibromobut-2-ene

Solution:



Question4. Which one of the following has the highest dipole moment?

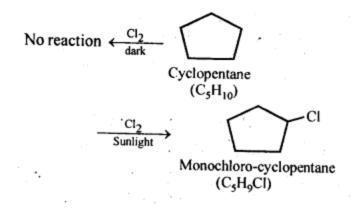
(i)CH₃Cl₂ (ii) CHCl₃ (iii) CCl₄

Solution :

The three dimensional structures of the three compounds along with the direction of dipole moment in each of their bonds are given below:

CCl₄ being symmetrical has zero dipole moment. In CHCl₃, the resultant of two C – Cl dipole moments is opposed by the resultant of C – H and C – Cl bonds. Since the dipole moment of latter resultant is expected to be smaller than the former, CHCl₃ has a finite dipole (1.03 D) moment. In CH₂Cl₂, the resultant of two C – Cl dipole moments is reinforced by resultant of two C – H dipoles, therefore, CH₂Cl₂ (1 .62 D) has a dipole moment higher than that of CHCl₃. Thus, CH₂Cl₂ has highest dipole moment.

Question5. A hydrocarbon C5H10 does not react with chlorine in dark but gives a single monochloro compound C5H9Cl in bright sunlight. Identify the hydrocarbon.


Solution

A hydrocarbon with the molecular formula, C5H10 belongs to the group with a general molecular formula CnH2n. Therefore, it may either be an alkene or a cycloalkane.

Since hydrocarbon does not react with chlorine in the dark, it cannot be an alkene. Thus, it should be a cycloalkane.

Further, the hydrocarbon gives a single monochloro compound, C5H9Cl by reacting with chlorine in bright sunlight. Since a single monochloro compound is formed, the hydrocarbon must contain H-atoms that are all equivalent. Also, as all H-atoms of a cycloalkane are equivalent, the hydrocarbon must be a cycloalkane. Hence, the said compound is cyclopentane.

The reactions involved in the question are:

Question6. Write the isomers of the compound having formula C4H9Br.

Solution

There are four isomers of the compound having the formula C4H9Br. These isomers are given below.

:

Double bond equivalent (DBE) for C4H9Br

 $=\frac{4 (4-2) + 9 (1-2) + 1(1-2)}{2} + 1 = 0$ So none of the isomer has a ring or unsaturation, so the isomers are position or chain isomers

$$(ii) CH_3 - CH - CH_2Br$$

1-Bromo-2-methylpropane

$$\begin{array}{c} (iii) \text{ CH}_3 - \text{CH}_2 - \begin{array}{c} \text{CH} - \text{CH}_3 \\ \\ \text{Br} \end{array} \end{array}$$

2-Bromo butane

(iv)
$$CH_3 - C - Br$$

 CH_3

2-Bromo-2-methylpropane

Question7. Write the equations for the preparation of 1-iodobutane from

(i) 1-butanol

(ii) 1-chlorobutane

(iii) but-1-ene.

Solution :

(i)
$$CH_3 CH_2 CH_2 CH_2 OH + KI + H_3 PO_4$$

 $\rightarrow CH_3 CH_2 CH_2 CH_2 CH_2 I + H_2 O + KH_2 PO_4$
(ii) $CH_3 CH_2 CH_2 CH_2 CI + KI \xrightarrow{Acetone}$
 $CH_3 CH_2 CH_2 CH_2 CH_2 I + KCI \downarrow$
(iii) $CH_3 CH_2 - CH = CH_2 + HBr \xrightarrow{Paroxice}$
 $CH_3 CH_2 CH_2 CH_2 Br \xrightarrow{\downarrow Nal / Acetone}$
 $CH_3 CH_2 CH_2 CH_2 CH_2 H_2 Br$

Question8. What are ambident nucleophiles? Explain with an example.

Solution

Ambident nucleophiles are nucleophiles having two nucleophilic sites. Thus, ambident nucleophiles have two sites through which they can attack.

For example, cyanide ion is a resonance hybrid of the following two structures:

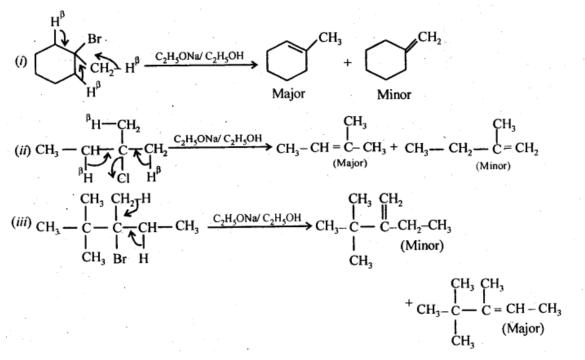
 $\overline{:} C \equiv N: \longleftrightarrow : C = N \overline{:}$

It can attack through carbon to form cyanide and through N to form is O cyanide.

Question9. Which compound in each of the following pairs will react faster in SN2 reaction with OH-?

(i)CH₃Br (ii)(CH₃)₃CCl or CH₃Cl CH₃I

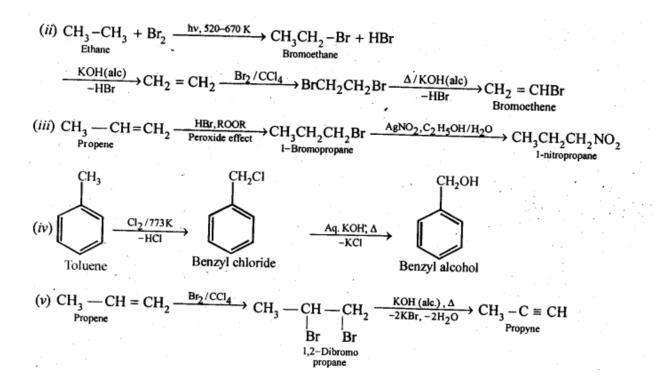
(i)Since I- ion is a better leaving group than Br- ion, therefore, CH_3I reacts faster CH_3Br in S_N2 reaction with OH- ion. (ii)On steric grounds, 1° alkyl halides are more reactive than tert-alkyl halides in S_N2 reactions. Therefore, CH_3CI will react at a faster rate than $(CH_3)_3CCI$ in a S_N2 reaction with OH- ion.

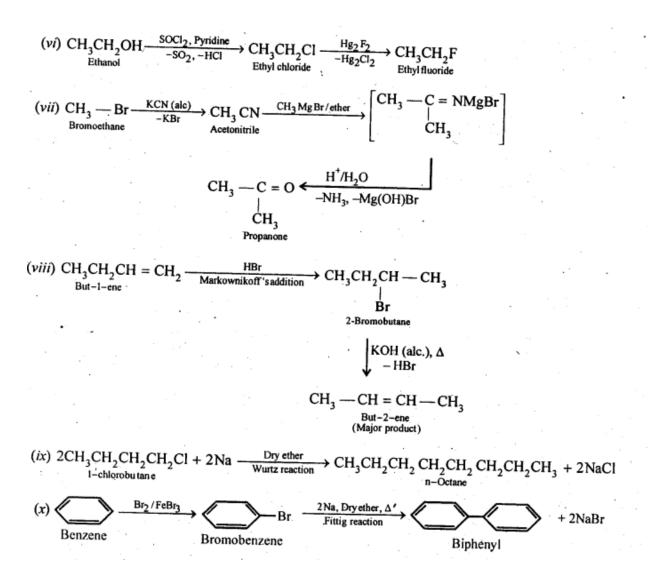

Question 10. Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

(i) 1-Bromo-1-methylcyclohexane

(ii) 2-Chloro-2-methylbutane

(iii) 2,2,3-Trimethyl-3-bromopentane.


Question11. How will you bring about the following conversions?


(i) Ethanol to but-1-yne

:

- (ii) Ethane to bromoethene
- (iii) Propene to 1-nitropropane
- (iv) Toluene to benzyl alcohol
- (v) Propene to propyne
- (vi) Ethanol to ethyl fluoride
- (vii) Bromomethane to propanone
- (viii) But-1-ene to but-2-ene
- (ix) 1-Chlorobutane to n-octane
- (x) Benzene to biphenyl.

(i)
$$CH_{3}CH_{2}OH \xrightarrow{SOCl_{2}, Pyridine} CH_{3}CH_{2}-Cl_{Chloroethane (I)}$$

 $CH \equiv CH + NaNH_{2} \xrightarrow{Liq NH_{3}, 196K} HC \equiv C^{-} Na^{+}_{Sodium acetylide (II)}$
 $CH_{3} - CH_{2} - Cl + HC \equiv C^{-} Na^{+} \longrightarrow CH_{3}CH_{2} - Cl = CH + NaCl_{(II)}$

Question12. Explain why

(i) the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride?

(ii) alkyl halides, though polar, are immiscible with water?

(iii) Grignard reagents should be prepared under anhydrous conditions?

Solution

(i)In chlorobenzene, the Cl-atom is linked to a sp2 hybridized carbon atom. In cyclohexyl chloride, the Cl-atom is linked to a sp3 hybridized carbon atom. Now, sp2 hybridized carbon has more s-character than sp3 hybridized carbon atom. Therefore, the former is more

•

electronegative than the latter. Therefore, the density of electrons of C–Cl bond near the Cl-atom is less in chlorobenzene than in cydohexyl chloride.

Moreover, the –R effect of the benzene ring of chlorobenzene decreases the electron density of the C–Cl bond near the Cl-atom. As a result, the polarity of the C–Cl bond in chlorobenzene decreases. Hence, the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.

(ii) To be miscible with water, the solute-water force of attraction must be stronger than the solute-solute and water-water forces of attraction. Alkyl halides are polar molecules and so held together by dipole-dipole interactions. Similarly, strong H-bonds exist between the water molecules. The new force of attraction between the alkyl halides and water molecules is weaker than the alkyl halide-alkyl halide and water-water forces of attraction. Hence, alkyl halides (though polar) are immiscible with water.

(iii) Grignard reagents are very reactive. In the presence of moisture, they react to give alkanes.Therefore, Grignard reagents should be prepared under anhydrous conditions.

Question 13. Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.

Solution

Uses of Freon - 12

Freon-12 (dichlorodifluoromethane, CF2Cl2) is commonly known as CFC. It is used as a refrigerant in refrigerators and air conditioners. It is also used in aerosol spray propellants such as body sprays, hair sprays, etc. However, it damages the ozone layer. Hence, its manufacture was banned in the United States and many other countries in 1994.

:

Uses of DDT

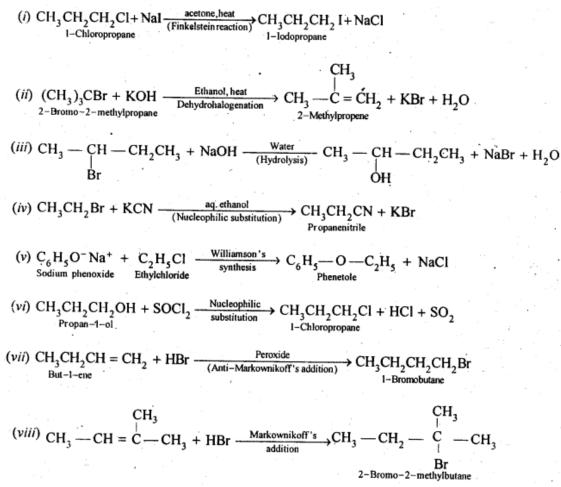
DDT (p, p-dichlorodiphenyltrichloroethane) is one of the best known insecticides. It is very effective against mosquitoes and lice. But due its harmful effects, it was banned in the United States in 1973.

Uses of carbontetrachloride (CCl4)

(i) It is used for manufacturing refrigerants and propellants for aerosol cans.

(ii) It is used as feedstock in the synthesis of chlorofluorocarbons and other chemicals.

(iii) It is used as a solvent in the manufacture of pharmaceutical products.

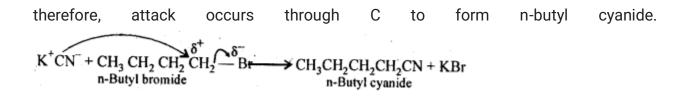

(iv) Until the mid 1960's, carbon tetrachloride was widely used as a cleaning fluid, a degreasing agent in industries, a spot reamer in homes, and a fire extinguisher.

Uses of iodoform (CHI3)

lodoform was used earlier as an antiseptic, but now it has been replaced by other formulations-containing iodine-due to its objectionable smell. The antiseptic property of iodoform is only due to the liberation of free iodine when it comes in contact with the skin.

Question14. Write the structure of the major organic product in each of the following reactions:

(i) $CH_3CH_2CH_2CI + NaI \xrightarrow{Acetone, heat}$ (ii) $(CH_3)_3CBr + KOH \xrightarrow{Ethanol, heat}$ (iii) $CH_3CH(Br)CH_2CH_3 + NaOH \xrightarrow{Water}$ (iv) $CH_3CH_2Br + KCN \xrightarrow{aq.ethanol}$ (v) $C_6H_5ONa + C_2H_5CI \longrightarrow$ (vi), $CH_3CH_2CH_2OH + SOCl_2 \longrightarrow$ (vii) $CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$ (viii) $CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$


Question15. Write the mechanism of the following reaction:

n-BuBr + KCN $\xrightarrow{\text{EtOH}-\text{H}_2\text{O}}$ n-BuCN

Solution

KCN is a resonance hybrid of the following two contributing structures: $K^+[-:C = N: -:C = N: -]$

Thus, CN- ion is an ambident nucleophile. Therefore, it can attack the "carbon atom of C-Br bond in n-BuBr either through C or N. Since C – C bond is stronger than C – N bond,

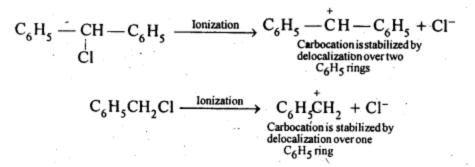
Question16. Arrange the compounds of each set in order of reactivity towards SN2 displacement:

(i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane

(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 3-Bromo-2-methylbutane

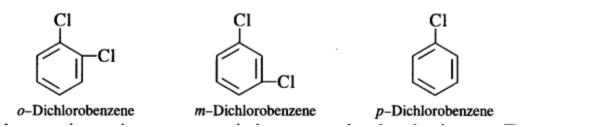
(iii) 1-Bromobutane, 1-Bromo-2,2-dimethylpropane, 1-Bromo-2-methylbutane, 1-Bromo-3-methylbutane.

Solution


The $S_N 2$ reactions reactivity depends upon steric hindrance. More the steric hindrance slower the reaction. Thus the order of reactivity will be $1^{\circ} > 2^{\circ} > 3^{\circ}$

Since in case of 1° alkyl halides steric hindrance increases in the order) n-alkyl halides, alkyl halides with a substituent at any position other than the β -position, one substituent at the β -position, two substituents at the β -position, therefore, the reactivity decreases in the same order. Thus, the reactivity of the given alkyl bromides decreases in the order: 1-Bromobutane > I-Bromo-3-methylbutane > I-Bromo-2-methylbutane> 1-Bromo-2,2-dimethyl propane.

Question 17. Out of $C_6H_5CH_2CI$ and $C_6H_5CHCIC_6H_5$, which is more easily hydrolysed by aqueous KOH?


Solution						:
$C_6H_5CH_2CI$ is 1	10 aryl halide v	while C₀H₅C	CH(CI)C ₆ H₅	is a 2° aryl ha	lide. In S	$S_N 1$ reactions, the
reactivity	depends	upon	the	stability	of	carbocations.

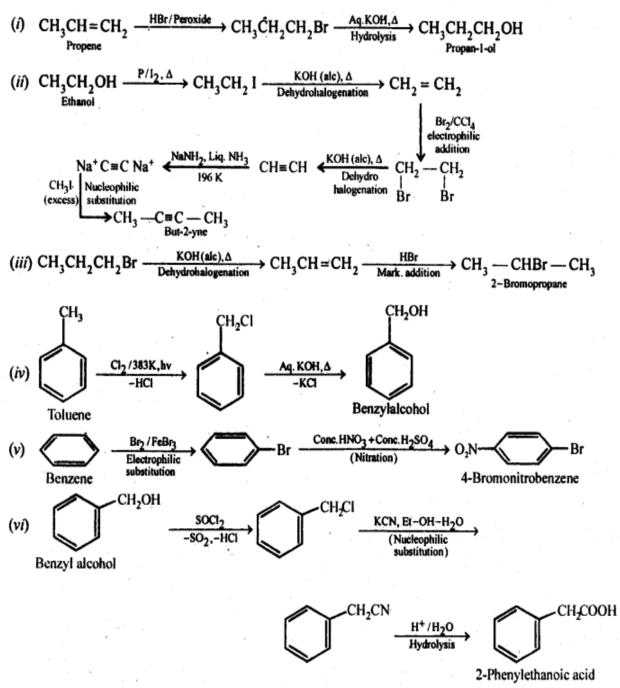
Since the $C_6H_5CHC_6H_5$ carbocation is more stable than $C_6H_5CH_2$ carbocation, therefore, $C_6H_5CHCIC_6H_5$ gets hydrolysed more easily than $C_6H_5CH_2CI$ under S_N1 conditions. However, under S_N2 conditions, the reactivity depends on steric hindrance, therefore, under S_N2 conditions, $C_6H_5CH_2CI$ gets hydrolysed more easily than $C_6H_5CHCIC_6H_5$.

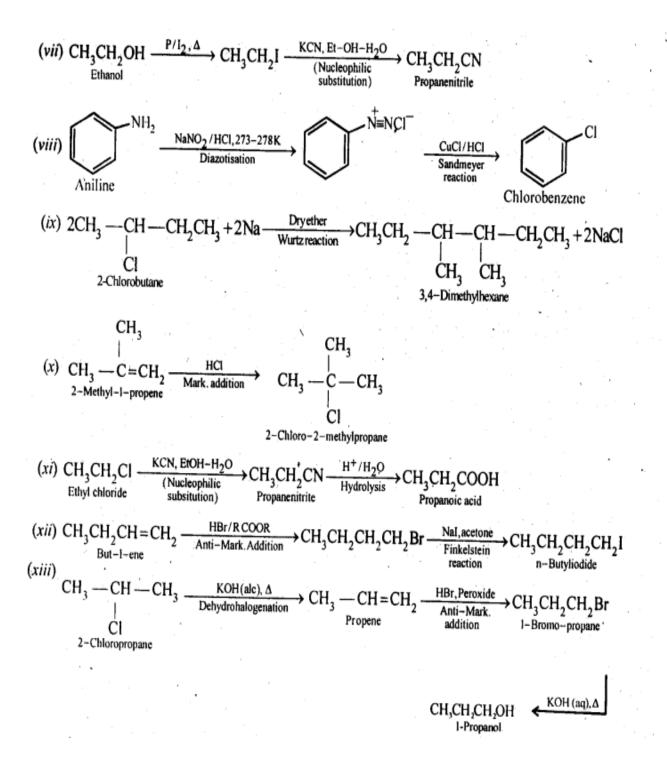
Question 18. p-Dichlorobenzene has higher m.p. and lower solubility than those of oand m-isomers. Discuss.

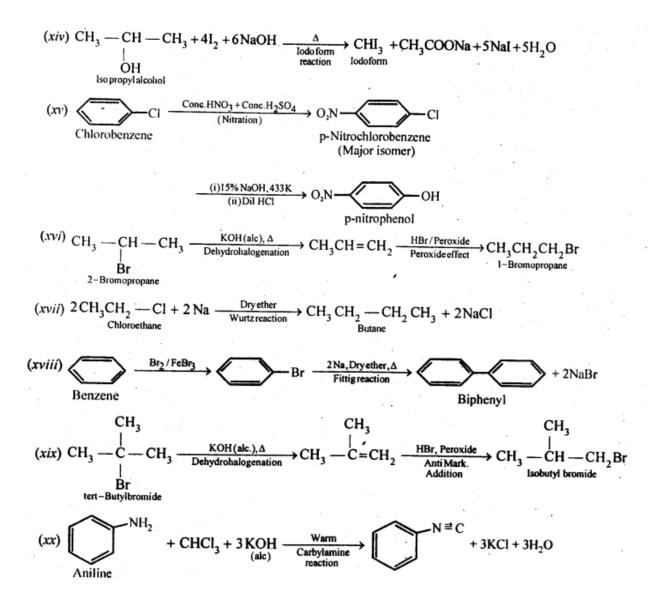
Solution

:

p-Dichlorobenzene is more symmetrical than o-and m-isomers. For this reason, it fits more closely than o-and m-isomers in the crystal lattice. Therefore, more energy is required to break the crystal lattice of p-dichlorobenzene. As a result, p-dichlorobenzene has a higher melting point and lower solubility than o-and m-isomers.


Question 19. How the following conversions can be carried out?


(i) Propene to propan-1-ol


(ii) Ethanol to but-1-yne

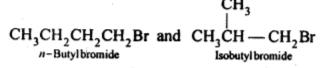
- (iii) 1-Bromopropane to 2-bromopropane
- (iv) Toluene to benzyl alcohol

- (v) Benzene to 4-bromonitrobenzene
- (vi) Benzyl alcohol to 2-phenylethanoic acid
- (vii) Ethanol to propanenitrile
- (viii) Aniline to chlorobenzene
- (ix) 2-Chlorobutane to 3, 4-dimethylhexane
- (x) 2-Methyl-1-propene to 2-chloro-2-methylpropane
- (xi) Ethyl chloride to propanoic acid
- (xii) But-1-ene to n-butyliodide
- (xiii) 2-Chloropropane to 1-propanol
- (xiv) Isopropyl alcohol to iodoform
- (xv) Chlorobenzene to p-nitrophenol
- (xvi) 2-Bromopropane to 1-bromopropane
- (xvii) Chloroethane to butane
- (xviii) Benzene to diphenyl
- (xix) tert-Butyl bromide to isobutyl bromide
- (xx) Aniline to phenylisocyanide

Question 20. The treatment of alkyl chlorides with aqueous KOH leads to the formation of alcohols but in the presence of alcoholic KOH, alkenes are major products. Explain.

Solution :

In aqueous medium i.e., water, KOH will be completely dissociated to give OH- ions. They being a strong nucleophile, will bring about the substitution of alkyl halides to form alcohols. At the same time, the OH" ions will be highly hydrated also. They will not be able to abstract a proton (H+) from the p-carbon atom to form alkenes. In other words, in aqueous medium, OH- ions will behave as weak base and elimination leading to alkenes will not be feasible. In alcoholic KOH, the solution will also contain ethoxide ions (C_2H_5O -) in addition to OH-

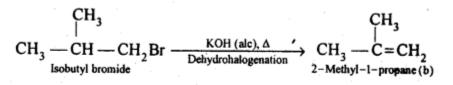

ions. They being a stronger base than OH- ions, will abstract a H+ ion from the β -carbon atom giving alkene as the product as a result of dehydrohalogenation.

Question 21. Primary alkyl halide C_4H_9Br (a) reacted with alcoholic KOH to give compound (b).Compound (b) is reacted with HBr to give (c) which is an isomer of (a). When (a) is reacted with sodium metal it gives compound (d), C_8H_{18} which is different from the compound formed when n-butyl bromide is reacted with sodium. Give the structural formula of (a) and write the equations for all the reactions.

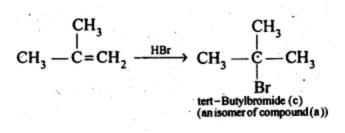
Solution

(i) There are two primary alkyl halides having the molecular formula, C_4H_9Br .

:



(ii) Since compound (a) when reacted with Na metal gave a compound (d) with molecular formula C_8H_{18} which was different from die compound obtained when n-butyl bromide was reacted with Na metal, therefore, (a) must be isobutyl bromide and compound (d) must be 2,3-dimethylhexane.

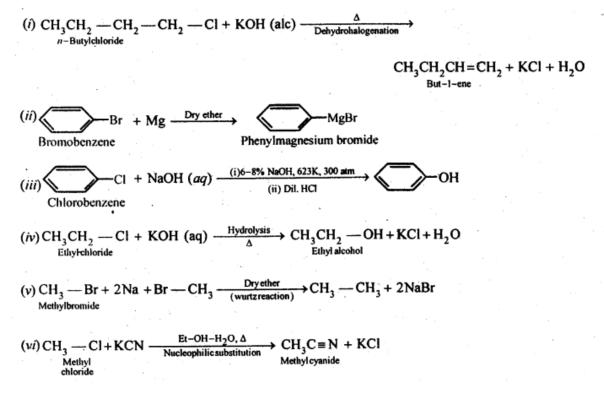

$$2CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}Br+2Na \xrightarrow{Wurtz reaction} CH_{3}CH_{2}CH$$

$$2 CH_{3} - CH - CH_{2}Br + 2Na \xrightarrow{Wurtz reaction} CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$$

(iii) If compound (a) is isobutyl bromide, than the compound (b) which it gives on treatment with alcoholic KOH must be 2-methyl-1-propane.

(iv) The compound (b) on treatment with HBr gives compound (c) in accordance with Markownikoff rule. Therefore, compound (c) is tert-butyl bromide which is an isomer of compound (a) ,i.e., isobutyl ' bromide.

Thus (a)is (b)is (c)is (d)is 2,5-dimethylhexane.


isobutyl 2-methyl-1 tert-butylbromide, bromide, -propane, and

Question22. What happens when

(i) n-butyl chloride is treated with alcoholic KOH,

(ii) bromobenzene is treated with Mg in the presence of dry ether,

- (iii) chlorobenzene is subjected to hydrolysis,
- (iv) ethyl chloride is treated with aqueous KOH,
- (v) methyl bromide is treated with sodium in the presence of dry ether,
- (vi) methyl chloride is treated with KCN.

