Chapter 2 - Polynomials

Exercise 2.1

1. Which of the following expressions are polynomials in one variable, and which are not? State reasons for your answer.

Page: 29

(i)
$$4x^2-3x+7$$

Solution:

The equation $4x^2-3x+7$ can be written as $4x^2-3x^1+7x^0$

Since x is the only variable in the given equation and the powers of x (i.e. 2, 1 and 0) are whole numbers, we can say that the expression $4x^2-3x+7$ is a polynomial in one variable.

(ii)
$$y^2 + \sqrt{2}$$

Solution:

The equation $y^2 + \sqrt{2}$ can be written as $y^2 + \sqrt{2}y^0$

Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^2 + \sqrt{2}$ is a polynomial in one variable.

Solution:

The equation $3\sqrt{t+t}\sqrt{2}$ can be written as $3t^{1/2}+\sqrt{2}t$

Though t is the only variable in the given equation, the power of t (i.e., 1/2) is not a whole number. Hence, we can say that the expression $3\sqrt{t+t}/2$ is **not** a polynomial in one variable.

(iv) y+2/y

Solution:

The equation y+2/y can be written as $y+2y^{-1}$

Though y is the only variable in the given equation, the power of y (i.e., -1) is not a whole number. Hence, we can say that the expression y+2/y is **not** a polynomial in one variable.

(v) x10+y3+t50

Solution:

Here, in the equation $x^{10}+y^3+t^{50}$

Though the powers, 10, 3, 50, are whole numbers, there are 3 variables used in the expression

 $x^{10}+y^{3}+t^{50}$. Hence, it is **not** a polynomial in one variable.

2. Write the coefficients of \mathbf{x}^2 in each of the following:

(i) 2+x²+x

Solution:

The equation $2+x^2+x$ can be written as $2+(1)x^2+x$

We know that the coefficient is the number which multiplies the variable.

Here, the number that multiplies the variable x^2 is 1

Hence, the coefficient of x^2 in $2+x^2+x$ is 1.

(ii) $2-x^2+x^3$

Solution:

The equation $2-x^2+x^3$ can be written as $2+(-1)x^2+x^3$

We know that the coefficient is the number (along with its sign, i.e. – or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is -1

Hence, the coefficient of x^2 in $2-x^2+x^3$ is -1.

(iii) $(\pi/2)x^2+x$

Solution:

The equation $(\pi/2)x^2 + x$ can be written as $(\pi/2)x^2 + x$

We know that the coefficient is the number (along with its sign, i.e. – or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is $\pi/2$.

Hence, the coefficient of x^2 in $(\pi/2)x^2 + x$ is $\pi/2$.

(iii)√2x-1

Solution:

The equation $\sqrt{2}x$ -1 can be written as $0x^2 + \sqrt{2}x$ -1 [Since $0x^2$ is 0]

We know that the coefficient is the number (along with its sign, i.e. – or +) which multiplies the variable.

Here, the number that multiplies the variable x2is 0

Hence, the coefficient of x^2 in $\sqrt{2}x$ -1 is 0.

3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution:

Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35.

For example, $3x^{35}+5$

Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100.

For example, $4x^{100}$