CHAPTER 3 ATOMS AND MOLECULES

EXERCISES

PAGE NO: 27

1. In a reaction, 5.3g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g of water and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass.

Sodium carbonate + acetic acid \rightarrow Sodium acetate + carbon dioxide + water

Solution:

Sodium carbonate + acetic acid \rightarrow Sodium acetate + carbon dioxide + water

5.3g + 6g 8.2g + 2.2g + 0.9g

As per the law of conservation of mass, the total mass of reactants must be equal to the total mass of

products.

As per the above reaction, L.H.S. = R.H.S. i.e., 5.3g + 6g = 2.2g + 0.9 g + 8.2 g = 11.3 g

Hence, the observations are in agreement with the law of conservation of mass.

2. Hydrogen and oxygen combine in a ratio of 1:8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas? Solution:

We know hydrogen and water mix in a ratio 1:8.

For every 1g of hydrogen, it is 8g of oxygen.

Therefore, for 3g of hydrogen, the quantity of oxygen = $3 \times 8 = 24g$

Hence, 24g of oxygen would be required for the complete reaction with 3g of hydrogen gas.

3. Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Solution:

The relative number and types of atoms are constant in a given composition, says Dalton's atomic theory, which is based on the rule of conservation of mass.

"Atoms cannot be created nor be destroyed in a chemical reaction."

4. Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Solution:

The postulate of Dalton's atomic theory that can explain the law of definite proportions is that the

relative number and kinds of atoms are equal in given compounds.

EXERCISES

PAGE NO: 30

1. Define the atomic mass unit.

Solution:

An atomic mass unit is a unit of mass used to express the weights of atoms and molecules where one

atomic mass is equal to 1/12th the mass of one carbon-12 atom.

2. Why is it not possible to see an atom with the naked eyes?

Solution:

Firstly, atoms are minuscule in nature, measured in nanometers. Secondly, except for atoms of noble

gases, they do not exist independently. Hence, an atom cannot be visible to the naked eyes.

EXERCISES

PAGE NO: 34

- 1. Write down the formulae of
- (i) sodium oxide
- (ii) aluminium chloride
- (iii) sodium sulphide

(iv) magnesium hydroxide

Solution:

The following are the formulae:

- (i) sodium oxide Na₂O
- (ii) aluminium chloride AlCl₃
- (iii) sodium sulphide Na₂S
- (iv) magnesium hydroxide Mg (OH)₂

2. Write down the names of compounds represented by the following formulae:

(i) Al₂(SO₄)₃

(ii) CaCl₂

(iii) K₂SO₄

(iv) KNO₃

(v) CaCO₃.

Solution:

Listed below are the names of the compounds for each of the following formulae:

- (i) $AI_2(SO_4)_3$ Aluminium sulphate
- (ii) CaCl₂ Calcium chloride
- (iii) K₂SO₄ Potassium sulphate
- (iv) KNO3- Potassium nitrate
- (v) CaCO₃ Calcium carbonate

3. What is meant by the term chemical formula?

Solution:

Chemical formulas are used to describe the different types of atoms and their numbers in a compound or element. Each element's atoms are symbolised by one or two letters. A collection of chemical symbols that depicts the elements that make up a compound and their quantities.

For example, the chemical formula of hydrochloric acid is HCl.

4. How many atoms are present in a

(i) H₂S molecule and

(ii) **PO**₄³⁻ ion?

Solution:

The number of atoms present is as follows:

(i) H₂S molecule has 2 atoms of hydrogen and 1 atom of sulphur hence 3 atoms in total.

(ii) PO_{4³⁻} ion has 1 atom of phosphorus and 4 atoms of oxygen hence 5 atoms in total.

EXERCISES

PAGE NO: 35

1. Calculate the molecular masses of H₂, O₂, Cl₂, CO₂, CH₄, C₂H₆, C₂H₄, NH₃, CH₃OH.

Solution:

The following are the molecular masses:

The molecular mass of $H_2 - 2x$ atoms atomic mass of H = 2x lu = 2u

The molecular mass of $O_2 - 2x$ atoms atomic mass of O = 2x 16u = 32u

The molecular mass of $Cl_2 - 2x$ atoms atomic mass of Cl = 2x 35.5u = 71u

The molecular mass of CO_2 – atomic mass of C + 2 x atomic mass of O = 12 + $(2 \times 16)u = 44u$

The molecular mass of CH_4 – atomic mass of C + 4 x atomic mass of H = 12 + $(4 \times 1)u = 16u$

The molecular mass of C_2H_6-2 x atomic mass of C + 6 x atomic mass of H = (2 x 12) +

(6 x 1)u=24+6=30u

The molecular mass of C_2H_4 - 2 x atomic mass of C + 4 x atomic mass of H = $(2x \ 12)$ +

 $(4 \times 1)u = 24 + 4 = 28u$

The molecular mass of NH_3 - atomic mass of N + 3 x atomic mass of H = (14 + 3 x + 3)u = 17u

The molecular mass of CH₃OH – atomic mass of C + 3x atomic mass of H + atomic mass of O + atomic mass of H = $(12 + 3 \times 1 + 16 + 1)u = (12 + 3 \times 1 + 16 + 1)u = 32u$

2. Calculate the formula unit masses of ZnO, Na₂O, K₂CO₃, given atomic masses of Zn = 65u,

Na = 23 u, K=39u, C = 12u, and O=16u.

Solution:

Given:

The atomic mass of Zn = 65u

The atomic mass of Na = 23u

The atomic mass of K = 39u

The atomic mass of C = 12u

The atomic mass of O = 16u

The formula unit mass of ZnO= Atomic mass of Zn + Atomic mass of O = 65u + 16u = 81u

The formula unit mass of Na₂O = 2 x Atomic mass of Na + Atomic mass of O = $(2 \times 23)u + 16u = 46u + 16u = 62u$

The formula unit mass of $K_2CO_3 = 2 \times Atomic mass of K + Atomic mass of C + 3$ $x Atomic mass of O = <math>(2 \times 39)u + 12u + (3 \times 16)u = 78u + 12u + 48u = 138u$

EXERCISES

PAGE NO: 36

1. A 0.24g sample of a compound of oxygen and boron was found by analysis to contain 0.096g of boron and 0.144g of oxygen. Calculate the percentage composition of the compound by weight.

Solution:

Given: Mass of the sample compound = 0.24g, mass of boron = 0.096g, mass of oxygen = 0.144g

To calculate the percentage composition of the compound,

Percentage of boron = mass of boron / mass of the compound x 100

 $= 0.096g / 0.24g \times 100 = 40\%$

Percentage of oxygen = 100 - percentage of boron

= 100 - 40 = 60%

2. When 3.0g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combination will govern your answer?

Solution:

When 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced.

Given that

3.0 g of carbon combines with 8.0 g of oxygen to give 11.0 of carbon dioxide.

Find out

We need to find out the mass of carbon dioxide that will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen.

Solution

First, let us write the reaction taking place here.

 $C + O2 \rightarrow CO2$

As per the given condition, when 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced.

 $3g + 8g \rightarrow 11g$ (from the above reaction)

The total mass of reactants = mass of carbon + mass of oxygen

=3g+8g

=11g

The total mass of reactants = Total mass of products

Therefore, the law of conservation of mass is proved.

Then, it also depicts that carbon dioxide contains carbon and oxygen in a fixed ratio by mass, which is 3:8.

Thus, it further proves the law of constant proportions.

3 g of carbon must also combine with 8 g of oxygen only.

This means that (50-8)=42g of oxygen will remain unreacted.

The remaining 42 g of oxygen will be left un-reactive. In this case, too, only 11 g of carbon dioxide will be formed

The above answer is governed by the law of constant proportions.

3. What are polyatomic ions? Give examples.

Solution:

Polyatomic ions are ions that contain more than one atom, but they behave as a single unit.

Example: CO_{3²⁻}, H₂PO₄-

4. Write the chemical formula of the following.

(a) Magnesium chloride

- (b) Calcium oxide
- (c) Copper nitrate
- (d) Aluminium chloride
- (e) Calcium carbonate

Solution:

The following are the chemical formula of the above-mentioned list:

- (a) Magnesium chloride MgCl₂
- (b) Calcium oxide CaO
- (c) Copper nitrate Cu(NO₃)₂
- (d) Aluminium chloride AICI₃
- (e) Calcium carbonate CaCO₃

5. Give the names of the elements present in the following compounds.

- (a) Quick lime
- (b) Hydrogen bromide
- (c) Baking powder
- (d) Potassium sulphate

Solution:

The following are the names of the elements present in the following compounds:

- (a) Quick lime Calcium and oxygen (CaO)
- (b) Hydrogen bromide Hydrogen and bromine (HBr)
- (c) Baking powder Sodium, Carbon, Hydrogen, Oxygen (NaHCO₃)
- (d) Potassium sulphate Sulphur, Oxygen, Potassium (K₂SO₄)

6. Calculate the molar mass of the following substances.

- (a) Ethyne, C₂H₂
- (b) Sulphur molecule, S₈
- (c) Phosphorus molecule, P4 (Atomic mass of phosphorus =31)
- (d) Hydrochloric acid, HCl

(e) Nitric acid, HNO₃

Solution:

Listed below is the molar mass of the following substances:

(a) Molar mass of Ethyne $C_2H_2= 2 \times Mass$ of C+2 x Mass of H =

 $(2 \times 12) + (2 \times 1) = 24 + 2 = 26g$

(b) Molar mass of Sulphur molecule $S_8 = 8 \times Mass$ of $S = 8 \times 32 = 256g$

(c) Molar mass of Phosphorus molecule, $P_4 = 4 \times Mass$ of $P = 4 \times 31 = 124g$

(d) Molar mass of Hydrochloric acid, HCl = Mass of H+ Mass of Cl = 1+35.5 = 36.5g

(e) Molar mass of Nitric acid, HNO $_3$ =Mass of H+ Mass of Nitrogen + 3 x Mass of O = 1 + 14+

3×16 = 63g