CHAPTER 3 CHEMICAL KINETICS

INTEXT QUESTIONS

PAGE NO: 66

:

:

Question 1. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

Solution

$$r_{av} = \frac{-\Delta R}{\Delta t} = \frac{\Delta [P]}{\Delta t}$$

Average rate of reaction

$$= \frac{(0.03 - 0.02) \text{ M}}{25 \times 60 \text{ sec}}$$
$$= \frac{0.01 \text{ M}}{25 \times 60 \text{ s}} = 6.66 \text{ M s}^{-1}$$

= 6.67 × 10^{-6 M s-1}

Question 2. In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5 mol L⁻¹ to 0.4 mol L⁻¹ in 10 minutes. Calculate the rate during this interval?

Solution

Average rate
$$= -\frac{1}{2} \frac{\Delta [A]}{\Delta t}$$

 $= -\frac{1}{2} \frac{[A]_2 - [A]_1}{t_2 - t_1}$
 $= -\frac{1}{2} \frac{0.4 - 0.5}{10}$
 $= -\frac{1}{2} \frac{-0.1}{10}$
 $= 0.005 \text{ mol L}^{-1} \text{ min}^{-1}$
 $= 5 \times 10^{-3} \text{M min}^{-1}$

 $= 0.005 \text{ mol } L^{-1 \min - 1}$

= 5 × 10⁻³ M min⁻¹

INTEXT QUESTIONS

PAGE NO: 71

:

:

Question 3. For a reaction, $A + B \rightarrow$ Product; the rate law is given by, $r = k [A]^{\frac{1}{2}} [B]^2$. What is the order of the reaction?

Solution

The order of the reaction $r = k [A]^{\frac{1}{2}} [B]^2$

= 1 / 2 + 2

= 2.5

Question 4. The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y?

Solution

The reaction $X \rightarrow Y$ follows second order kinetics.

Therefore, the rate equation for this reaction will be:

Rate = $k[X]^{2(1)}$

Let $[X] = a \mod L^{-1}$, then equation (1) can be written as:

Rate₁ = k .(a)²

= ka²

If the concentration of X is increased to three times, then [X] = 3a mol L⁻¹

Now, the rate equation will be:

Rate = $k (3a)^{2}$

= 9(ka2)

Hence, the rate of formation will increase by 9 times.

INTEXT QUESTIONS

PAGE NO: 78

Question 5. A first order reaction has a rate constant $1.15 \, 10^{-3} \, s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g?

Solution

From the question, we can write down the following information:

Initial amount = 5 g

Final concentration = 3 g

Rate constant = 1.15 10⁻³ s⁻¹

We know that for a 1st order reaction,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$
$$= \frac{2.303}{1.15 \times 10^{-3}} \log \frac{5}{3}$$
$$= \frac{2.303}{1.15 \times 10^{-3}} \times 0.2219$$

= 444.38 s

= 444 s (approx)

Question 6. Time required to decompose SO_2Cl_2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Solution

We know that for a 1st order reaction,

:

t_{1/2} = 0.693 / k

It is given that $t_{1/2} = 60 \text{ min}$

k = 0.693 / t½

= 0.693 / 60

= 0.01155 min⁻¹

= 1.155 min⁻¹

Or

k = 1.925 x 10-2 s⁻¹

INTEXT QUESTIONS

PAGE NO: 84

:

Question 7. What will be the effect of temperature on rate constant?

Solution

The rate constant of a reaction is nearly doubled with a 10° rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by Arrhenius equation,

 $k = Ae - E_a / RT$

Where,

A is the Arrhenius factor or the frequency factor

T is the temperature

R is the gas constant

 $\mathsf{E}_{\scriptscriptstyle a}$ is the activation energy

Question 8. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate E_a.

:

Solution

It is given that $T_1 = 298 \text{ K}$

∴T₂ = (298 + 10) K

= 308 K

We also know that the rate of the reaction doubles when temperature is increased by 10°.

Therefore, let us take the value of $k_1 = k$ and that of $k_2 = 2k$

Also, R = 8.314 J K^{-1 mol-1}

Now, substituting these values in the equation:

$$\log \frac{k_2}{k_1} = \frac{E_{\rm a}}{2.303 \ R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

We get:

$$\log \frac{2k}{k} = \frac{E_a}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$
$$\Rightarrow \log 2 = \frac{E_a}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$
$$\Rightarrow E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$$

= 52897.78 J mol⁻¹

= 52.9 kJ mol-1

Question 9. The activation energy for the reaction $2HI_{(g)} \rightarrow H_2 + I_{2(g)}$ is 209.5 kJ mol⁻¹ at 581K. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Solution

In the given case:

E_a = 209.5 kJ mol⁻¹ = 209500 J mo¹⁻¹

T = 581 K

R = 8.314 JK⁻¹ mol⁻¹

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

 $x = e^{-Ea/RT}$

⇒Inx= -Ea / RT

⇒logx=-Ea / 2.303RT

⇒logx= -209500Jmol⁻¹ / 2.303 × 8.314JK⁻¹mol⁻¹×581

=-18.8323

```
Now,x= Antilog (-18.8323)
```

=1.471×10⁻¹⁹

EXERCISES

PAGE NO: 85

Question 1. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

(i) $3 \text{ NO}(g) \rightarrow N_2 O(g) \text{ Rate} = k[NO]^2$

(ii) $H_2O_2(aq) + 3 I_{(aq)}^- + 2 H^+ \rightarrow 2 H_2O(l) + I_3^- Rate = k[H_2O_2][I^-]$

(iii) $CH_{3}CHO(g) \rightarrow CH_{4}(g) + CO(g)$ Rate = k [CH₃CHO]^{3/2}

(iv) $C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$ Rate = k [C_2H_5Cl]

Solution

(i) Given rate = k [NO]²

Therefore, order of the reaction = 2

Dimension of $k = Rate / [NO]^2$

= mol L⁻¹ s⁻¹/ (mol L-1)²

= mol L⁻¹ s⁻¹ / mol² L⁻²

= L mol⁻¹s⁻¹

(ii) Given rate = $k [H_2O_2] [I^-]$

Therefore, order of the reaction = 2

Dimension of

 $k = Rate / [H_2O_2][I -]$

= mol L⁻¹ s⁻¹ / (mol L⁻¹) (mol L⁻¹)

= L mol⁻¹ s⁻¹

```
(iii) Given rate = k [CH<sub>3</sub>CHO]<sup>3/2</sup>
```

Therefore, order of reaction = 3/2

Dimension of $k = \text{Rate} / [CH3CHO]^{3/2}$

= mol L⁻¹ s⁻¹ / (mol L⁻¹)^{3/2}

= mol L⁻¹ s⁻¹ / mol^{3/2} L^{-3/2}

= L1/2 mol-1/2 s-1

(iv) Given rate = $k [C_2 H_5 Cl]$

Therefore, order of the reaction = 1

```
Dimension of k = Rate / [C_2H_5Cl]
```

```
= mol L<sup>-1</sup> s<sup>-1</sup> / mol L<sup>-1</sup>
```

= S⁻¹

Question 2. For the reaction:

 $\mathbf{2A} + \mathbf{B} \rightarrow \mathbf{A}_2\mathbf{B}$

the rate = $k[A][B]^2$ with k = 2.0 × 10⁻⁶ mol⁻² L₂ s⁻¹. Calculate the initial rate of the reaction when [A] = 0.1 mol L-1, [B] = 0.2 mol L⁻¹. Calculate the rate of reaction after [A] is reduced to 0.06 mol L⁻¹.

:

Solution

The initial rate of the reaction is

Rate = $k [A][B]^2$

= $(2.0 \times 10^{-6 \text{ mol}-2} \text{ L}^2 \text{ s}^{-1}) (0.1 \text{ mol } \text{L}^{-1}) (0.2 \text{ mol } \text{L}^{-1})^2$

= 8.0 × 10⁻⁹ mol⁻² L² s⁻¹

When [A] is reduced from 0.1 mol L⁻¹ to 0.06 mol⁻¹, the concentration of A reacted = (0.1 – 0.06) mol L⁻¹ = 0.04 mol L⁻¹

Therefore, concentration of B reacted 1/2 x 0.04 mol L-1 = 0.02 mol L-1

Then, concentration of B available, [B] = (0.2 - 0.02) mol L⁻¹

= 0.18 mol L⁻¹

After [A] is reduced to 0.06 mol L^{-1} , the rate of the reaction is given by,

Rate = $k [A][B]^2$

= $(2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1})$ (0.06 mol L⁻¹) (0.18 mol L⁻¹)²

= 3.89 mol L⁻¹ s⁻¹

Question 3. The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if k = 2.5 × 10⁻⁴ mol⁻¹ L s⁻¹?

Solution

The decomposition of NH₃ on platinum surface is represented by the following equation.

:

 $2 \operatorname{NH}_{3(g)} \xrightarrow{P_1} \operatorname{N}_{2(g)} + 3 \operatorname{H}_{2(g)}$

Therefore,

Rate = $-\frac{1}{2}\frac{d[\mathrm{NH}_3]}{dt} = \frac{d[\mathrm{N}_2]}{dt} = \frac{1}{3}\frac{d[\mathrm{H}_2]}{dt}$

However, it is given that the reaction is of zero order.

Therefore,

$$-\frac{1}{2}\frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = k$$
$$= 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

Therefore, the rate of production of N2is

$$\frac{d[N_2]}{dt} = 2.5 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{s}^{-1}$$

And, the rate of production of H₂is

$$\frac{d[H_2]}{dt} = 3 \times 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{s}^{-1}$$

= 7.5 × 10⁻⁴ mol L⁻¹ s⁻¹

Question 4. The decomposition of dimethyl ether leads to the formation of CH_4 , H_2 and CO and the reaction rate is given by

Rate = k [CH₃OCH₃]^{3/2}

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

rate = k (P_{CH3OCH3})^{3/2}

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

:

:

:

Solution

If pressure is measured in bar and time in minutes, then

Unit of rate = bar min⁻¹

Rate = k $[CH_3OCH_3]^{3/2}$

$\Rightarrow k = Rate / [CH_3OCH_3]^{3/2}$

Therefore, unit of rate constants(k) = bar min⁻¹/ bar^{3/2}

= bar^{-1/2} min ⁻¹

Question 5. Mention the factors that affect the rate of a chemical reaction.

Solution

The factors that affect the rate of a reaction are as follows.

(i) Concentration of reactants (pressure in case of gases)

(ii) Temperature

(iii) Presence of a catalyst

Question 6. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

(i) doubled (ii) reduced to half?

Solution

Letthe concentration of the reactant be [A] = a

Rate of reaction, $R = k [A]^2$

= ka²

(i) If the concentration of the reactant is doubled, i.e. [A] = 2a, then the rate of the reaction would be

 $R = k(2a)^{2}$

= 4ka²

= 4 R

Therefore, the rate of the reaction would increase by 4 times.

(ii) If the concentration of the reactant is reduced to half, i.e. [A] = 1/2 a, then the rate of the reaction would be

 $R = k(1/2a)^{2}$

= 1/4 Ka²

= 1/4 R

Therefore, the rate of the reaction would be reduced to

Question 7. What change would happen in the rate constant of a reaction when there is a change in its temperature? How can this temperature effect on rate constant be represented quantitatively?

Solution

When a temperature of 10° rises for a chemical reaction then the rate constant increases and becomes near to double of its original value.

:

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,

k=Ae^{-Ea/RT}

Where,

k = rate constant,

A = Frequency factor / Arrhenius factor,

R = gas constant

T = temperature

Ea = activation energy for the reaction.

Question 8. In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90
[Ester]mol L⁻¹	0.55	0.31	0.17	0.085

(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

:

(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

Solution

(i) Average rate of reaction between the time interval, 30 to 60 seconds, d[ester] / dt

= (0.31-0.17) / (60-30)

= 0.14 / 30

= 4.67 × 10⁻³ mol L⁻¹ s⁻¹

(ii) For a pseudo first order reaction,

k = 2.303/t log [R]^o/[R]

For $t = 30 s, k_1$

= 1.911 × 10⁻² s⁻¹

For t = 60 s, k1 = 2.303/ 30 log 0.55 / 0.31

= 1.957 × 10⁻² s⁻¹

For t = 90 s, k3 = 2.303/90 log 0.55/0.085

= 2.075 × 10 – 2s – 1

= 2.075 × 10⁻² s⁻¹

Then, average rate constant, $k = k_1 + k_2 + k_3 / 3$

= 1.911 × 10⁻² + 1.957 × 10⁻² + 2.075 × 10^{-2/3}

= 1.981 x 10⁻² s – 1

Question 9. A reaction is first order in A and second order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of B three times?

(iii) How is the rate affected when the concentrations of both A and B are doubled?

:

Solution

(i) The differential rate equation will be

(i) The differential rate equation will be

$$-\frac{d[\mathbf{R}]}{dt} = k[\mathbf{A}][\mathbf{B}]^2$$

(ii) If the concentration of B is increased three times, then

$$-\frac{d[\mathbf{R}]}{dt} = k[\mathbf{A}][\mathbf{3B}]^2$$
$$= 9 \cdot k[\mathbf{A}][\mathbf{B}]^2$$

Therefore, the rate of reaction will increase 9 times.

(iii) When the concentrations of both A and B are doubled,

$$-\frac{d[\mathbf{R}]}{dt} = k[\mathbf{A}][\mathbf{B}]^{2}$$
$$= k[2\mathbf{A}][2\mathbf{B}]^{2}$$
$$= 8 \cdot k[\mathbf{A}][\mathbf{B}]^{2}$$

Therefore, the rate of reaction will increase 8 times.

Question 10. In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/ mol L⁻¹	0.20	0.20	0.40
B/ mol L-1	0.30	0.10	0.05
r₀/ mol L⁻¹ s⁻¹	5.07 × 10⁻⁵	5.07 × 10⁻⁵	1.43 × 10⁻₄

:

What is the order of the reaction with respect to A and B?

Solution

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore,

$$r_{0} = k [A]^{x} [B]^{y}$$

$$5.07 \times 10^{-5} = k [0.20]^{x} [0.30]^{y}$$
 (i)

$$5.07 \times 10^{-5} = k [0.20]^{x} [0.10]^{y}$$
 (ii)

$$1.43 \times 10^{-4} = k [0.40]^{x} [0.05]^{y}$$
 (iii)

Dividing equation (i) by (ii), we obtain

$$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{k [0.20]^x [0.30]^y}{k [0.20]^x [0.10]^y}$$
$$\Rightarrow 1 = \frac{[0.30]^y}{[0.10]^y}$$
$$\Rightarrow \left(\frac{0.30}{0.10}\right)^0 = \left(\frac{0.30}{0.10}\right)^y$$
$$\Rightarrow y = 0$$

Dividing equation (iii) by (ii), we obtain

$$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{k [0.40]^x [0.05]^y}{k [0.20]^x [0.30]^y}$$

$$\Rightarrow \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{[0.40]^x}{[0.20]^x} \qquad \begin{bmatrix} \text{Since } y = 0, \\ [0.05]^y = [0.30]^y = 1 \end{bmatrix}$$

$$\Rightarrow 2.821 = 2^x$$

$$\Rightarrow \log 2.821 = x \log 2 \qquad \text{(Taking log on both sides)}$$

$$\Rightarrow x = \frac{\log 2.821}{\log 2}$$

Dividing equation (iii) by (ii), we obtain

= 1.496

= 1.5 (approximately)

Hence, the order of the reaction with respect to A is 1.5 and with respect to B is zero.

Question 11 The following results have been obtained during the kinetic studies of the reaction:

$2A + B \rightarrow C + D$

Experiment	A/ mol L-1	B/ mol L-1	Initial rate of formation of D/mol $L^{-1 \min - 1}$
I	0.1	0.1	6.0 × 10-₃
11	0.3	0.2	7.2 × 10 ⁻²
111	0.3	0.4	2.88 × 10⁻¹
IV	0.4	0.1	2.40 × 10-2

:

Determine the rate law and the rate constant for the reaction.

Solution

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore, rate of the reaction is given by,

Let the order of the reaction with respect to A be xand with respect to B be y.

Therefore, rate of the reaction is given by,

Rate = $k[A]^{y}[B]^{y}$

According to the question,

$$6.0 \times 10^{-3} = k [0.1]^{x} [0.1]^{y}$$
(i)

$$7.2 \times 10^{-2} = k [0.3]^{x} [0.2]^{y}$$
(ii)

$$2.88 \times 10^{-1} = k [0.3]^{x} [0.4]^{y}$$
(iii)

$$2.40 \times 10^{-2} = k [0.4]^{x} [0.1]^{y}$$
(iv)

Dividing equation (iv) by (i), we obtain

$$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k \left[0.4 \right]^x \left[0.1 \right]^y}{k \left[0.1 \right]^x \left[0.1 \right]^y}$$
$$\Rightarrow 4 = \frac{\left[0.4 \right]^x}{\left[0.1 \right]^x}$$
$$\Rightarrow 4 = \left(\frac{0.4}{0.1} \right)^x$$
$$\Rightarrow (4)^1 = 4^x$$
$$\Rightarrow x = 1$$

Dividing equation (iii) by (ii), we obtain

Dividing equation (iv) by (i), we obtain

Let the order of the reaction with respect to A be xand with respect to B be y.

Therefore, rate of the reaction is given by,

Rate = $k[A]^{r}[B]^{r}$

According to the question,

$$6.0 \times 10^{-5} = k [0.1]^{x} [0.1]^{y}$$
(i)

$$7.2 \times 10^{-2} = k [0.3]^{x} [0.2]^{y}$$
(ii)

$$2.88 \times 10^{-1} = k [0.3]^{x} [0.4]^{y}$$
(iii)

$$2.40 \times 10^{-2} = k [0.4]^{x} [0.1]^{y}$$
(iv)

Dividing equation (iv) by (i), we obtain

$$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k \left[0.4\right]^x \left[0.1\right]^y}{k \left[0.1\right]^x \left[0.1\right]^y}$$
$$\Rightarrow 4 = \frac{\left[0.4\right]^x}{\left[0.1\right]^x}$$
$$\Rightarrow 4 = \left(\frac{0.4}{0.1}\right)^x$$
$$\Rightarrow (4)^1 = 4^x$$
$$\Rightarrow x = 1$$

Dividing equation (iii) by (ii), we obtain

Dividing equation (iii) by (ii), we obtain

$$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}} = \frac{k [0.3]^x [0.4]^y}{k [0.3]^x [0.2]^y}$$
$$\Rightarrow 4 = \left(\frac{0.4}{0.2}\right)^y$$
$$\Rightarrow 4 = 2^y$$
$$\Rightarrow 2^2 = 2^y$$
$$\Rightarrow y = 2$$

Therefore, the rate law is Rate = k [A] [B] ²

$$k = \frac{\text{Rate}}{[A][B]^2}$$

From experiment I, we obtain

$$k = \frac{6.0 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}}{(0.1 \text{ mol } \text{L}^{-1})(0.1 \text{ mol } \text{L}^{-1})^2}$$

= 6.0 L²mol⁻²min⁻¹
From experiment II, we obtain

$$k = \frac{7.2 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}}{(0.3 \text{ mol } \text{L}^{-1})(0.2 \text{ mol } \text{L}^{-1})^2}$$

= 6.0 L²mol⁻²min⁻¹
From experiment III, we obtain
$$k = \frac{2.88 \times 10^{-1} \text{ mol } \text{L}^{-1} \text{ min}^{-1}}{2}$$

$$\kappa = \frac{1}{(0.3 \text{ mol } \text{L}^{-1})(0.4 \text{ mol } \text{L}^{-1})^2}$$
$$= 6.0 \text{ L}^2 \text{mol} - 2 \text{min} - 1$$

From experiment IV, we obtain

$$k = \frac{2.40 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}}{(0.4 \text{ mol } \text{L}^{-1})(0.1 \text{ mol } \text{L}^{-1})^2}$$

= 6.0 L²mol⁻²min⁻¹

Therefore, rate constant, $k = 6.0 \text{ L}^2 \text{mol}^{-2} \text{min}^{-1}$

Question 12. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	A/ mol L-1	B/ mol L-1	Initial rate/mol L ⁻¹ min ⁻¹
1	0.1	0.1	2.0 × 10 ⁻²
II		0.2	4.0 × 10 ⁻²
111	0.4	0.4	_
IV	—	0.2	2.0 × 10 ⁻²
	I	I	

Solution

The given reaction is of the first order with respect to A and of zero order with respect to B.

Therefore, the rate of the reaction is given by,

Rate = $k [A]^{1}[B]^{\circ}$

 \Rightarrow Rate = k [A]

From experiment I, we obtain

2.0 × 10⁻² mol L⁻¹ min⁻¹ = k (0.1 mol L⁻¹)

 \Rightarrow k = 0.2 min⁻¹

From experiment II, we obtain

 $4.0 \times 10^{-2 \, \text{mol}} L^{-1} \, \text{min}^{-1} = 0.2 \, \text{min}^{-1} \, [\text{A}]$

 \Rightarrow [A] = 0.2 mol L⁻¹

From experiment III, we obtain

Rate = 0.2 min⁻¹ × 0.4 mol L⁻¹

= 0.08 mol L⁻¹ min⁻¹

From experiment IV, we obtain

2.0 × 10⁻² mol L⁻¹ min⁻¹ = 0.2 min⁻¹ [A]

 \Rightarrow [A] = 0.1 mol L⁻¹

Question 13. Calculate the half-life of a first order reaction from their rate constants given below:

:

(i) 200 s⁻¹ (ii) 2 min⁻¹ (iii) 4 years⁻¹

Solution

(i) Half life, t $_{1/2}$ = 0.693 / k

= 0.693 / 200 s⁻¹

= 3.47×10 -3 s (approximately)

(ii) Half life, t 1/2 = 0.693 / k

= 0.693 / 2 min-1

= 0.35 min (approximately)

(iii) Half life, t 1/2 = 0.693 / k

= 0.693 / 4 years⁻¹

= 0.173 years (approximately)

Question 14. The half-life for radioactive decay of 14C is 5730 years. An archaeological artifact containing wood had only 80% of the 14C found in a living tree. Estimate the age of the sample.

:

Solution

Here, $k = 0.693 / t_{1/2}$

= 0.693 / 5730 years-1

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$
$$= \frac{2.303}{\frac{0.693}{5730}} \log \frac{100}{80}$$

= 1845 years (approximately)

Hence, the age of the sample is 1845 years.

Question 15. The experimental data for decomposition of $N_2O_{\text{\tiny 5}}$

 $[2N2O5 \rightarrow 4NO2 + O2]$ in gas phase at 318K are given below:

t(s)	0	400	800	1200	1600	2000	2400	2800	3200
10² × [N₂O₅] mol L⁻¹	1.6 3	1.3 6	1.1 4	0.93	0.78	0.64	0.53	0.43	0.35

(i) Plot $[N_2O_5]$ against t.

(ii) Find the half-life period for the reaction.

- (iii) Draw a graph between log $[N_2O_5]$ and t.
- (iv) What is the rate law?
- (v) Calculate the rate constant.

(vi) Calculate the half-life period from k and compare it with (ii).

(ii) Time corresponding to the concentration, 1630×10^2 / 2 mol L⁻¹ = 81.5 mol L⁻¹ is the half life. From the graph, the half life is obtained as 1450 s.

:

1	i	i	i	١
l	I	I	ļ)

t(s)	10² × [N ₂ O ₅] mol L ^{.1}	Log[N ₂ O ₅]
0	1.63	- 1.79
400	1.36	- 1.87

(iv) The given reaction is of the first order as the plot, $Log[N_2O_5]$ v/s t, is a straight line. Therefore, the rate law of the reaction is

Rate = $k [N_2O_5]$

(v) From the plot, $\text{Log}[N_2O_5]$ v/s t, we obtain

– k /2.303

Again, slope of the line of the plot $Log[N_2O_5]$ v/s t is given by

- k / 2.303. = -0.67 / 3200

Therefore, we obtain,

- k / 2.303 = - 0.67 / 3200

⇒ k = 4.82 x 10-4 s-1

(vi) Half-life is given by,

t_{1/2} = 0.693 / k

= 0.639 / 4.82×10⁻⁴ s

=1.438 x 103

This value, 1438 s, is very close to the value that was obtained from the graph.

Question 16. The rate constant for a first order reaction is 60 s⁻¹. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

:

Solution

It is known that,

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

= $\frac{2.303}{60 \text{ s}^{-1}} \log \frac{1}{\frac{1}{16}}$
= $\frac{2.303}{60 \text{ s}^{-1}} \log 16$
= $4.6 \times 10^{-2} \text{ s (approximately)}$

Hence, the required time is 4.6×10^{-2} s.

Question 17. During nuclear explosion, one of the products is 90Sr with half-life of 28.1 years. If 1µg of 90Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Solution :

Here,
$$k = \frac{0.693}{t_{\frac{1}{2}}} = \frac{0.693}{28.1} \text{ y}^{-1}$$

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$
$$\Rightarrow 10 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]}$$
$$\Rightarrow 10 = \frac{2.303}{\frac{0.693}{28.1}} (-\log[R])$$
$$\Rightarrow \log[R] = -\frac{10 \times 0.693}{2.303 \times 28.1}$$
$$\Rightarrow [R] = \operatorname{antilog} (-0.1071)$$
$$= \operatorname{antilog} (\overline{1.8929})$$
$$= 0.7814 \mu g$$

Therefore, 0.7814 μg of 90s will remain after 10 years.

Again,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$
$$\Rightarrow 60 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]}$$
$$\Rightarrow \log[R] = -\frac{60 \times 0.693}{2.303 \times 28.1}$$
$$\Rightarrow [R] = \operatorname{antilog} (-0.6425)$$
$$= \operatorname{antilog} (\overline{1.3575})$$
$$= 0.2278 \mu g$$

Therefore, 0.2278 μ g of 90^{sr} will remain after 60 years.

Question 18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

Solution

For a first order reaction, the time required for 99% completion is

t₁ = 2.303/k Log 100/100-99

= 2.303/k Log 100

= 2x 2.303/k

For a first order reaction, the time required for 90% completion is

 $t_2 = 2.303/k \text{ Log } 100 / 100-90$

= 2.303/k Log 10

= 2.303/k

Therefore, $t_1 = 2t_2$

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Question 19. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{\scriptscriptstyle 1/2}.$

:

Solution

For a first order reaction,

 $t = 2.303/k Log [R] ^{o} / [R]$

k = 2.303/40min Log 100 / 100-30

= 2.303/40min Log 10 / 7

= 8.918 x 10-3 min⁻¹

Therefore, $t_{1/2}$ of the decomposition reaction is

t1/2 = 0.693/k

= 0.693 / 8.918 x 10-3 min

= 77.7 min (approximately)

= 77.7 min (approximately)

Question 20. For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

t (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Solution

The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.

:

	$(CH_3)_2$ CHN=NCH $(CH_3)_{2(g)}$ -	$\rightarrow N_{2(g)}$	+ $C_6H_{14(g)}$
At $t = 0$	\mathbf{P}_0	0	0
At $t = t$	$P_0 - p$	р	р

After time, t, total pressure, $Pt = (P_{\circ} - p) + p + p$

 \Rightarrow Pt = (P_o + p)

 $\Rightarrow p = P_t - P_o$

therefore, $P_{\circ} - p = P_{\circ} - Pt - P_{\circ}$

 $= 2P_0 - P_t$

For a first order reaction,

 $k = 2.303/t \text{ Log } P_{\circ} / P_{\circ} - p$

= $2.303/t \text{ Log } P_0 / 2 P_0 - P_t$

When t = 360 s, k = 2.303 / 360s log 35.0 / 2×35.0 – 54.0

= 2.175 × 10⁻³s⁻¹

When t = 720 s, k = 2.303 / 720s log 35.0 / 2×35.0 – 63.0

= 2.235 × 10⁻³ s⁻¹

Hence, the average value of rate constant is

k = (2.175 × 10⁻³ + 2.235 × 10⁻³)/2 s⁻¹

= 2.21 × 10⁻³ s⁻¹

Question 21 The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume.

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s⁻¹	Total pressure/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Solution

The thermal decomposition of SO_2Cl_2 at a constant volume is represented by the following equation.

:

	$SO_2Cl_{2(g)}$	\longrightarrow	$SO_{2(g)}$	+ $\operatorname{Cl}_{2(g)}$
At $t = 0$	\mathbf{P}_{0}		0	0
At $t = t$	$P_0 - p$		р	р

After time, t, total pressure, $P_t = (P_o - p) + p + p$

 $\Rightarrow P_t = (P_\circ + p)$

 \Rightarrow p = Pt – P^o

therefore, $P^{o} - p = P^{o} - Pt - P^{o}$

 $= 2 P_{\circ} - P_{t}$

For a first order reaction,

 $k = 2.303/t \text{ Log } P_{\circ} / P_{\circ} - p$

= 2.303/t Log P_° / 2 P_° – Pt

When t= 100 s,

k = 2.303 / 100s log 0.5 / 2×0.5 – 0.6

= 2.231 × 10 – 3s – 1

When Pt= 0.65 atm,

P0+ p= 0.65

 \Rightarrow p= 0.65 – P0

= 0.65 – 0.5

= 0.15 atm

Therefore, when the total pressure is 0.65 atm, pressure of SOCl2 is

 $_{PSOCL2} = P_0 - p$

= 0.5 – 0.15

= 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,

Rate = $k(p_{SOCL2})$

 $= (2.23 \times 10 - 3s - 1) (0.35 \text{ atm})$

= 7.8 × 10⁻⁴ atm s⁻¹

Question 22. The rate constant for the decomposition of N_2O_5 at various temperatures is given below:

T/°C	0	20	40	60	80
10⁵ X K /S¹	0.0787	1.70	25.7	178	2140

Draw a graph between ln k and 1/T and calculate the values of A and E_a .

Predict the rate constant at 30° and 50°C.

Solution :

From the given data, we obtain

0	20	40	60	80
273	293	313	333	353
3.66×10-₃	3.41×10⁻₃	3.19×10-₃	3.0×10-₃	2.83 ×10⁻₃
0.0787	1.70	25.7	178	2140
-7.147	- 4.075	-1.359	-0.577	3.063
⁴ 2				
	0 273 3.66×10⁻³ 0.0787 −7.147	0 20 273 293 3.66×10 ⁻³ 3.41×10 ⁻³ 0.0787 1.70 -7.147 - 4.075	0 20 40 273 293 313 3.66×10 ⁻³ 3.41×10 ⁻³ 3.19×10 ⁻³ 0.0787 1.70 25.7 -7.147 -4.075 -1.359	0 20 40 60 273 293 313 333 3.66×10 ⁻³ 3.41×10 ⁻³ 3.19×10 ⁻³ 3.0×10 ⁻³ 0.0787 1.70 25.7 178 -7.147 - 4.075 -1.359 -0.577

Slope of the line,

 $\frac{y_2 - y_1}{x_2 - x_1} = -12.301 \,\mathrm{K}$

According to Arrhenius equation,

Slope = $-\frac{E_a}{R}$ $\Rightarrow E_a = -Slope \times R$ = $-(-12.301 \text{ K}) \times (8.314 \text{ J K}^{-1} \text{ mol}^{-1})$ = $102.27 \text{ kJ mol}^{-1}$

Again,

 $\ln k = \ln A - \frac{E_a}{RT}$ $\ln A = \ln k + \frac{E_a}{RT}$ When T = 273 K, $\ln k = -7.147$ Then, $\ln A = -7.147 + \frac{102.27 \times 10^3}{8.314 \times 273}$ = 37.911Therefore, $A = 2.91 \times 10^6$ When T = 30 + 273 K = 303 K, $\frac{1}{T} = 0.0033$ K = 3.3×10^{-3} K Then, at $\frac{1}{T} = 3.3 \times 10^{-3}$ K, $\ln k = -2.8$ Therefore, $k = 6.08 \times 10.2$ s-1 Again when T = 50 + 273 K = 323 K,

1/T = 3.1 x 10-3 K

In k = – 0.5

Therefore, k = 0.607 s-1

Question 23. The rate constant for the decomposition of hydrocarbons is 2.418 × 10⁻⁵ s⁻¹ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.

Solution

k = 2.418 × 10⁻⁵ s⁻¹

T = 546 K

E_a = 179.9 kJ mol⁻¹ = 179.9 × 10³ J mol⁻¹

According to the Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

$$\Rightarrow \ln k = \ln A - \frac{E_a}{RT}$$

$$\Rightarrow \log k = \log A - \frac{E_a}{2.303 \text{ RT}}$$

$$\Rightarrow \log A = \log k + \frac{E_a}{2.303 \text{ RT}}$$

$$= \log (2.418 \times 10^{-5} \text{ s}^{-1}) + \frac{179.9 \times 10^3 \text{ J mol}^{-1}}{2.303 \times 8.314 \text{ Jk}^{-1} \text{ mol}^{-1} \times 546 \text{ K}}$$

= 12.5917

Therefore, A = antilog (12.5917)

= 3.9 × 10¹² s⁻¹ (approximately)

Question 24. Consider a certain reaction $A \rightarrow Products$ with $k = 2.0 \times 10^{-2} s^{-1}$. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L^{-1} .

Solution

k = 2.0 × 10⁻² s⁻¹

:

T = 100 s

[A]_o = 1.0 moL⁻¹

Since the unit of k is s⁻¹, the given reaction is a first order reaction.

Therefore, k = 2.303/t Log $[A]^{\circ} / [A]$ $\Rightarrow 2.0 \times 110-2 \text{ s-1} = 2.303/100 \text{ Log } 1.0 / [A]$ $\Rightarrow 2.0 \times 110-2 \text{ s-1} = 2.303/100 \text{ (} - \text{Log } [A] \text{)}$ $\Rightarrow - \text{Log } [A] = - (2.0 \times 10-2 \times 100) / 2.303$ $\Rightarrow [A] = \text{antilog } [- (2.0 \times 10-2 \times 100) / 2.303]$ $= 0.135 \text{ mol } L^{-1} \text{ (approximately)}$

Hence, the remaining concentration of A is 0.135 mol L^{-1} .

Question 25. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2}$ = 3.00 hours. What fraction of sample of sucrose remains after 8 hours?

Solution : For a first order reaction,

 $k = 2.303/t \text{ Log } [R]^{o} / [R]$

It is given that, t1/2 = 3.00 hours

Therefore, k = 0.693 / t1/2

= 0.693/3 h-1

= 0.231 h – 1

Then, 0.231 h – 1 = 2.303 / 8h Log [R]^o / [R]

$$\Rightarrow \log \frac{\left[R\right]_{0}}{\left[R\right]} = \frac{0.231 \text{ h}^{-1} \times 8 \text{ h}}{2.303}$$
$$\Rightarrow \frac{\left[R\right]_{0}}{\left[R\right]} = \text{antilog}(0.8024)$$
$$\Rightarrow \frac{\left[R\right]_{0}}{\left[R\right]} = 6.3445$$
$$\Rightarrow \frac{\left[R\right]_{0}}{\left[R\right]_{0}} = 0.1576 \text{ (approx)}$$
$$= 0.158$$

Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.

Question 26. The decomposition of hydrocarbon follows the equation $k = (4.5 \times 10^{11} \text{ s}^{-1}) \text{ e}^{-28000} \text{ K/T}$ Calculate E_a.

:

Solution

The given equation is

 $k = (4.5 \times 10^{11} \text{ s}^{-1}) \text{ e}^{-28000} \text{ K/T} (i)$

Arrhenius equation is given by,

 $k = Ae^{-Ea/RT}$ (ii)

From equation (i) and (ii), we obtain

Ea / RT = 28000K / T

 \Rightarrow Ea = R x 28000K

= 8.314 J K⁻¹ mol⁻¹ × 28000 K

= 232792 J mol⁻¹

= 232.792 kJ mol⁻¹

Question 27. The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

 $\log k = 14.34 - 1.25 \times 10^{4 \text{ K/T}}$

Calculate E_a for this reaction and at what temperature will its half-period be 256 minutes?

:

Solution

Arrhenius equation is given by,

k= Ae -Ea/RT

⇒In k = In A – Ea/RT

 \Rightarrow In k = Log A – Ea/RT

 $\Rightarrow \text{Log } \text{k} = \text{Log } \text{A} - \text{Ea}/2.303\text{RT}$ (i)

The given equation is

Log k = 14.34 - 1.25 104 K/T (ii)

From equation (i) and (ii), we obtain

Ea/2.303RT = 1.25 104 K/T

= 1.25 × 104 K × 2.303 × 8.314 J K⁻¹ mol⁻¹

= 239339.3 J mol⁻¹ (approximately)

= 239.34 kJ mol-1

Also, when $t_{1/2}$ = 256 minutes,

 $k = 0.693 / t^{1/2}$

= 0.693 / 256

= 2.707 × 10⁻³min⁻¹

= 4.51 × 10 – 5s⁻¹

= 2.707 × 10⁻³ min⁻¹

It is also given that, $\log k = 14.34 - 1.25 \times 10^{4} \text{K/T}$

$$\Rightarrow \log(4.51 \times 10^{-5}) = 14.34 - \frac{1.25 \times 10^4 \text{ K}}{T}$$
$$\Rightarrow \log(0.654 - 05) = 14.34 - \frac{1.25 \times 10^4 \text{ K}}{T}$$
$$\Rightarrow \frac{1.25 \times 10^4 \text{ K}}{T} = 18.686$$
$$\Rightarrow T = \frac{1.25 \times 10^4 \text{ K}}{18.686}$$

= 668.95 K

= 669 K (approximately)

Question 28. The decomposition of A into product has value of k as 4.5×10^3 s⁻¹ at 10°C and energy of activation 60 kJ mol⁻¹. At what temperature would k be 1.5×10^4 s⁻¹?

:

Solution

From Arrhenius equation, we obtain

 $\log k2/k1 = Ea / 2.303 R (T_2 - T_1) / T_1T_2$

Also, $k_1 = 4.5 \times 10^{3 \text{ s}-1}$

T₁ = 273 + 10 = 283 K

k₂ = 1.5 × 10⁴ s⁻¹

E_a = 60 kJ mol⁻¹ = 6.0 × 10⁴ J mol⁻¹

Then,

$$\log \frac{1.5 \times 10^4}{4.5 \times 10^3} = \frac{6.0 \times 10^4 \text{ J mol}^{-1}}{2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \left(\frac{T_2 - 283}{283T_2}\right)$$

$$\Rightarrow 0.5229 = 3133.627 \left(\frac{T_2 - 283}{283T_2}\right)$$

$$\Rightarrow \frac{0.5229 \times 283 T_2}{3133.627} = T_2 - 283$$

$$\Rightarrow 0.0472T_2 = T_2 - 283$$

$$\Rightarrow 0.9528 T_2 = 283$$

$$\Rightarrow T_2 = 297.019 \text{ K (approximately)}$$

= 297 K

= 24°C

Hence, k would be $1.5 \times 10^4 s^{-1}$ at 24°C.

Question 29. The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K. If the value of A is 4×10^{10} s⁻¹. Calculate k at 318 K and E_a.

:

```
Solution

For a first order reaction,

t = 2.303 / k \log a / a - x

At 298 K, t = 2.303 / k \log 100 / 90

= 0.1054 / k

At 308 K, t' = 2.303 / k' \log 100 / 75

= 2.2877 / k'

According to the question,

t = t'

\Rightarrow 0.1054 / k = 2.2877 / k'
```

 \Rightarrow k' / k = 2.7296

From Arrhenius equation, we obtain

$$\log \frac{k'}{k} = \frac{E_a}{2.303 \,\text{R}} \left(\frac{T' - T}{TT'} \right)$$

$$\log (2.7296) = \frac{E_a}{2.303 \times 8.314} \left(\frac{308 - 298}{298 \times 308} \right)$$

$$E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log(2.7296)}{308 - 298}$$

= 76640.096 J mol⁻¹
= 76.64 kJ mol⁻¹

To calculate k at 318 K,

It is given that, $A = 4 \times 1010 \text{ s}$ -1, T = 318 K

Again, from Arrhenius equation, we obtain

$$\log k = \log A - \frac{E_a}{2.303 \,\mathrm{R}\,T}$$
$$= \log \left(4 \times 10^{10}\right) - \frac{76.64 \times 10^3}{2.303 \times 8.314 \times 318}$$
$$= \left(0.6021 + 10\right) - 12.5876$$
$$= -1.9855$$

Therefore, k = Antilog (-1.9855)

= 1.034 x 10-2 s -1

Question 30. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Solution

From Arrhenius equation, we obtain

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \,\text{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

It is given that, $k_2 = 4k_1$
 $T_1 = 293 \,\text{K}$
 $T_2 = 313 \,\text{K}$
Therefore, $\log \frac{4k_1}{k_2} = \frac{E_a}{2.303 \times 8.314} \left(\frac{313 - 293}{293 \times 313} \right)$
 $\Rightarrow 0.6021 = \frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}$
 $\Rightarrow E_a = \frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$
 $= 52863.33 \,\text{J mol}^{-1}$
 $= 52.86 \,\text{kJ mol}^{-1}$

Hence, the required energy of activation is 52.86 kJmol-1.