CHAPTER2 POLYNOMIALS

Exercise 2.2

Page: 31

1. Find the value of the polynomial $(x)=5x-4x^2+3$.

(i)
$$x = 0$$

(ii)
$$x = -1$$

(iii)
$$x = 2$$

Let
$$f(x) = 5x-4x^2+3$$

(i) When
$$x = 0$$

$$f(0) = 5(0)-4(0)^2+3$$

(ii) When
$$x = -1$$

$$f(x) = 5x-4x^2+3$$

$$f(-1) = 5(-1)-4(-1)^2+3$$

(iii) When
$$x = 2$$

$$f(x) = 5x-4x^2+3$$

$$f(2) = 5(2)-4(2)^2+3$$

$$= 10-16+3$$

2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i)
$$p(y)=y^2-y+1$$

Solution:

$$p(y) = y^2 - y + 1$$

$$\therefore p(0) = (0)^{2} - (0) + 1 = 1$$

$$p(1) = (1)^2 - (1) + 1 = 1$$

$$p(2) = (2)^{2} - (2) + 1 = 3$$

(ii) $p(t)=2+t+2t^2-t^3$

$$p(t) = 2+t+2t^2-t^3$$

$$p(0) = 2 + 0 + 2(0)^{2} - (0)^{3} = 2$$

$$p(1) = 2+1+2(1)^2-(1)^3=2+1+2-1=4$$

$$p(2) = 2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$$

(iii)
$$p(x)=x^3$$

Solution:

$$p(x) = x^3$$

$$p(0) = (0)^3 = 0$$

$$p(1) = (1)^3 = 1$$

$$p(2) = (2)^3 = 8$$

(iv)
$$P(x) = (x-1)(x+1)$$

Solution:

$$p(x) = (x-1)(x+1)$$

$$p(0) = (0-1)(0+1) = (-1)(1) = -1$$

$$p(1) = (1-1)(1+1) = 0(2) = 0$$

$$p(2) = (2-1)(2+1) = 1(3) = 3$$

3. Verify whether the following are zeroes of the polynomial indicated against them.

(i)
$$p(x)=3x+1, x=-1/3$$

For,
$$x = -1/3$$
, $p(x) = 3x+1$

$$p(-1/3) = 3(-1/3)+1 = -1+1 = 0$$

 \therefore -1/3 is a zero of p(x).

(ii) $p(x) = 5x-\pi$, x = 4/5

Solution:

For,
$$x = 4/5$$
, $p(x) = 5x-\pi$

$$p(4/5) = 5(4/5) - \pi = 4 - \pi$$

 \therefore 4/5 is not a zero of p(x).

(iii)
$$p(x) = x^2-1, x = 1, -1$$

Solution:

For,
$$x = 1, -1$$
;

$$p(x) = x^2 - 1$$

$$p(1)=1^2-1=1-1=0$$

$$p(-1)=(-1)^2-1=1-1=0$$

 \therefore 1, -1 are zeros of p(x).

(iv)
$$p(x) = (x+1)(x-2), x = -1, 2$$

For,
$$x = -1,2$$
;

$$p(x) = (x+1)(x-2)$$

$$p(-1) = (-1+1)(-1-2)$$

$$=(0)(-3)=0$$

$$p(2) = (2+1)(2-2) = (3)(0) = 0$$

 \therefore -1, 2 are zeros of p(x).

(v)
$$p(x) = x^2$$
, $x = 0$

Solution:

For,
$$x = 0 p(x) = x^2$$

$$p(0) = 0^2 = 0$$

 \therefore 0 is a zero of p(x).

(vi)
$$p(x) = Ix + m, x = -m/I$$

Solution:

For,
$$x = -m/I$$
; $p(x) = Ix + m$

$$p(-m/I) = I(-m/I) + m = -m + m = 0$$

 \therefore -m/l is a zero of p(x).

(vii)
$$p(x) = 3x^2-1$$
, $x = -1/\sqrt{3}$, $2/\sqrt{3}$

For,
$$x = -1/\sqrt{3}$$
, $2/\sqrt{3}$; $p(x) = 3x^2-1$

$$\therefore p(-1/\sqrt{3}) = 3(-1/\sqrt{3})^2 - 1 = 3(1/3) - 1 = 1 - 1 = 0$$

$$p(2/\sqrt{3}) = 3(2/\sqrt{3})^2 - 1 = 3(4/3) - 1 = 4 - 1 = 3 \neq 0$$

 $\therefore -1/\sqrt{3}$ is a zero of p(x), but $2/\sqrt{3}$ is not a zero of p(x).

(viii) p(x) = 2x+1, x = 1/2

Solution:

For,
$$x = 1/2 p(x) = 2x+1$$

$$p(1/2) = 2(1/2)+1 = 1+1 = 2 \neq 0$$

 $\therefore 1/2$ is not a zero of p(x).

4. Find the zero of the polynomials in each of the following cases:

(i)
$$p(x) = x+5$$

Solution:

$$p(x) = x + 5$$

$$\Rightarrow$$
 x+5 = 0

$$\Rightarrow x = -5$$

 \therefore -5 is a zero polynomial of the polynomial p(x).

(ii)
$$p(x) = x-5$$

$$p(x) = x-5$$

$$\Rightarrow x-5 = 0$$

$$\Rightarrow$$
 x = 5

 \therefore 5 is a zero polynomial of the polynomial p(x).

(iii) p(x) = 2x+5

Solution:

$$p(x) = 2x + 5$$

$$\Rightarrow$$
 2x+5 = 0

$$\Rightarrow 2x = -5$$

$$\Rightarrow x = -5/2$$

x = -5/2 is a zero polynomial of the polynomial p(x).

(iv) p(x) = 3x-2

Solution:

$$p(x) = 3x-2$$

$$\Rightarrow$$
 3x-2 = 0

$$\Rightarrow$$
 3x = 2

$$\Rightarrow x = 2/3$$

x = 2/3 is a zero polynomial of the polynomial p(x).

(v)
$$p(x) = 3x$$

Solution:

$$p(x) = 3x$$

$$\Rightarrow$$
 3x = 0

$$\Rightarrow x = 0$$

 \therefore 0 is a zero polynomial of the polynomial p(x).

(vi) $p(x) = ax, a \neq 0$

Solution:

$$p(x) = ax$$

$$\Rightarrow$$
 ax = 0

$$\Rightarrow x = 0$$

x = 0 is a zero polynomial of the polynomial p(x).

(vii) p(x) = cx+d, $c \neq 0$, c, d are real numbers.

Solution:

$$p(x) = cx + d$$

$$\Rightarrow$$
 cx+d =0

$$\Rightarrow x = -d/c$$

 $\therefore x = -d/c$ is a zero polynomial of the polynomial p(x).