Exercise 2.1, Page: 26

Question1. Find the principal value of sin⁻¹ (-1/2)

Solution

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
 Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$

We know that the range of the principal value branch of sin⁻¹ is

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 and $\sin\left(-\frac{\pi}{2}\right) = -\frac{1}{2}$
Therefore, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)is - \frac{\pi}{6}$

Question 2. $\cos^{-1}(\sqrt{3}/2)$

Solution

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
, Then $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$

We know that the range of the principal value branch of cos⁻¹ is

$$[0,\pi]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
Therefore the priciple value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)is\frac{\pi}{6}$

Question3. cosec⁻¹(2)

Solution

Let $\operatorname{cosec}^{-1}(2) = y$. Then, $\operatorname{cos} ecy = 2 = \operatorname{cos} ec\left(\frac{\pi}{6}\right)$

We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ Therefore, the principal value of $\operatorname{cos} ec^{-1}(2)$ is $\frac{\pi}{6}$

Question4. $tan^{-1}(-\sqrt{3})$

Let
$$\tan^{-1}\left(-\sqrt{3}\right) = y$$
. Then $\tan y = -\sqrt{3} = -\frac{\tan \pi}{3} = \tan\left(-\frac{\pi}{3}\right)$

We know that the range of the principal value branch of tan⁻¹ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)is - \sqrt{3}$
Therefore, the principal value of $\tan^{-1}\left(\sqrt{3}\right)$ is $-\frac{\pi}{3}$

Question5. cos⁻¹(-1/2)

Solution :

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
 Then $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$
We know that the range of the principal value branch of \cos^{-1} is [0,pi] and $\cos\left(2\frac{\pi}{3}\right) = \frac{1}{2}$
Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$

Question6. tan⁻¹ (-1)

Solution :

Let
$$\tan^{-1}(-1) = y$$
. Then $\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$

We know that the range of the principal value branch of tan⁻¹ is

 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$

Therefore, the principal value of $an^{-1}(-1)$ is $rac{\pi}{4}$

Question7. sec⁻¹($2\sqrt{3}$)

Let
$$\sec^{-1}\left(rac{2}{\sqrt{3}}
ight) = y$$
, Then $\sec y = rac{2}{\sqrt{3}} = \sec\left(rac{\pi}{6}
ight)$

We know that the range of the principal value branch of sec⁻¹ is

$$[0,\pi] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$

Therefore, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)is\frac{\pi}{6}$ Solution :

Question8. $\cot^{-1}(\sqrt{3})$

Solution

Let
$$\cot^{-1}\Bigl(\sqrt{3}\Bigr) = y$$
 Then $\cot y = \sqrt{3} = \cot\Bigl(rac{\pi}{6}\Bigr)$

We know that the range of the principal value branch of \cot^{-1} is (0, π) and

$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$$

Therefore, the principal value of $\cot^{-1}\left(\sqrt{3}\right)$ is $\frac{\pi}{6}$

Question9. $\cos^{-1}(-1/\sqrt{2})$

Solution

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
 Then $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$

We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}
ight)$ is $\frac{3\pi}{4}$

Question10. $\operatorname{cosec}^{-1}(-\sqrt{2})$

Solution :

Let
$$\cos ec^{-1}\left(-\sqrt{2}\right) = y$$
, Then, $\cos ecy = -\sqrt{2} = -\cos ec\left(\frac{\pi}{4}\right) = \cos ec\left(-\frac{\pi}{4}\right)$

We know that the range of the principal value branch of cosec⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\cos ec\left(-\frac{\pi}{4}\right) = -\sqrt{2}$
Therefore, the principal value of $\cos ec^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$

Find the value of the following:

Question11.
$$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

Solution

Let $\tan^{-1}(1) = x$ Then $\tan x = 1 = \tan \frac{\pi}{4}$ $\therefore \tan^{-1}(1) = \frac{\pi}{4}$ Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$ Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$ $\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$ Let $\sin^{-1}\left(-\frac{1}{2}\right) = z$. Then $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$ $\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$ $\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$ $= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$ $= \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$

Question 12. $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$

Let
$$\cos^{(-1)}(1/2) = x$$
. Then, $\cos x = \frac{1}{2} = \cos(\pi/3)$
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y$, Then $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$
 $\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$

Question13.

Find the value of if $\sin^{-1} x = y$, then

A)
$$0 \le y < \pi$$

B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
c) $0 < y < \pi$
d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Solution

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, $\left[-rac{\pi}{2} \leq y \leq rac{\pi}{2}
ight]$

Therefore, option (B) is correct.

Question14.

Find the value of $an^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to

(A) π (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

Let $an^{-1}=x$, Then $an x=\sqrt{3}=rac{ an \pi}{3}$

We know that the range of the principle value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 $\therefore \tan^{-1}\sqrt{3} = \frac{\pi}{3}$ Let $\sec^{-1}(-2) = y$ Then, $\sec y = (-2) = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right)$ We know that the range of the principle value branch of \sec^{-1} is $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ $\therefore \sec^{-1}(-2) = \frac{2\pi}{3}$

Hence,
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

Therefore, option (B) is correct.

Exercise 2.2 Page: 29

 $3\sin^{-1}x=\sin^{-1}ig(3x-4x^3ig),x\in\left[-rac{1}{2},rac{1}{2}
ight]$ Question1.

Solution :

To prove :
$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Let $x = \sin\theta$. Then, $\sin^{-1}x = 0$
We have
R.H.S = $\sin^{-1}(3x - 4x^3) = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$
= $\sin^{-1}(\sin 3\theta)^{\circ}$
= 3θ
= $3\sin^{-1}x$
L.H.S

Proved.

$$3\cos^{-1}x \ = \cos^{-1}ig(4x^3-3xig), x\in ig[rac{1}{2},1ig]$$
tion2.

Question2

Solution :]

Let $x = \cos\theta$. Then, $\cos^{-1} x = \theta$. We have, R.H.S = $\cos^{-1}(4x^3 - 3x)$

$$= \cos^{-1} (4 \cos^3 \theta - 3 \cos \theta)$$
$$= \cos^{-1} (\cos 3\theta)$$
$$= 3\theta$$
$$= 3 \cos^{-1} x$$

Proved.

Question3. $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$

Solution

L.H.S =tan⁻¹
$$\frac{2}{11}$$
 + tan⁻¹ $\frac{7}{24}$
= $\frac{\tan^{-1}(\frac{2}{11} + \frac{7}{24})}{1 - \frac{2}{11} \cdot \frac{7}{24}}$ $\left[\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}\right]$
= tan^(-1) $\frac{\frac{48+77}{11\times 24}}{\frac{11\times 24-14}{11\times 24}}$
= tan⁻¹ $\frac{48+77}{264-14}$ = tan⁻¹ $\frac{125}{250}$ = tan⁻¹ $\frac{1}{2}$ = R.H.S

Proved.

Question4.
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$$

Solution :

LH.S =
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$$

= $\tan^{-1} \frac{2 \cdot \frac{1}{2}}{1 - (\frac{1}{2})^2} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \frac{1}{(\frac{3}{4})} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \cdot \frac{1}{7}} \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$
= $\tan^{-1} \frac{\frac{28+3}{21}}{\frac{21-4}{21}}$
= $\tan^{-1} \frac{31}{17} = R.H.S$

Write the following functions in the simplest form:

Question3.
$$\frac{\tan^{-1}}{x} \frac{\sqrt{1+x^2}-1}{x}, x \neq 0$$

Solution

 $\begin{aligned} \tan^{-1} \frac{\sqrt{1+x^2}-1}{x} \\ \text{Put } x &= \tan\theta \Rightarrow \theta = \tan^{-1}x \\ \therefore \tan^{-1} \frac{\sqrt{1+x^2}-1}{x} &= \tan^{-1}\left(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right) \\ &= \tan^{-1}\left(\frac{\sec\theta-1}{\tan\theta}\right) = \tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right) \\ &= \tan^{-1}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}}\cos\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right) \\ &= \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2} = \frac{1}{2}\tan^{-1}x \end{aligned}$

2

$$an^{-1} igg(\sqrt{rac{1-\cos x}{1+\cos x}} igg), x < \pi$$
 Question4.

$$egin{aligned} & an^{-1} \Bigg(\sqrt{rac{1-\cos x}{1+\cos x}} \Bigg), x < \pi \ & an^{-1} \Bigg(\sqrt{rac{1-\cos x}{1+\cos x}} \Bigg) = an^{-1} \Bigg(\sqrt{rac{2\sin^2 rac{x}{2}}{2\cos^2 rac{x}{2}}} \Bigg) \ &= an^{-1} \Bigg(rac{\sin rac{x}{2}}{\cos rac{x}{2}} \Bigg) = an^{-1} \Bigg(an rac{x}{2} \Bigg) \ &= rac{x}{2} \end{aligned}$$

$$an^{-1} \left(rac{\cos x - \sin x}{\cos x + \sin x}
ight)$$
, $0 < x < \pi$

$$\tan^{-1} \frac{\cos x - \sin x}{\cos x + \sin x}$$

Dividing cos x inside

$$= \tan^{-1} \left[\frac{\frac{\cos x - \sin x}{\cos x}}{\frac{\cos x + \sin x}{\cos x}} \right]$$

$$= \tan^{-1} \left[\frac{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}} \right]$$

$$= \tan^{-1} \left[\frac{1 - \tan x}{1 + \tan x} \right]$$

$$= \tan^{-1} \left[\frac{\frac{1 - \tan x}{1 + 1 \cdot \tan x}}{1 + 1 \cdot \tan x} \right] \quad (As \ \tan \frac{\pi}{4} = 1)$$

$$= \tan^{-1} \tan \left(\frac{\pi}{4} - x \right)$$

$$= \frac{\pi}{4} - x$$

$$an^{-1} rac{x}{\sqrt{a^2-x^2}}$$
, $|\mathbf{x}| < a$ Question6.

Solution :

$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
Put $x = a \sin \theta \Rightarrow \frac{x}{a} = \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$

$$\therefore \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}}\right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}}\right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta}\right)$$

$$= \tan^{-1} (\tan \theta) = \theta = \sin^{-1} \frac{x}{a}$$

$$an^{-1}igg(rac{3a^2x-x^3}{a^3-3ax^2}igg),a>0;rac{-a}{\sqrt{3}}\leq xrac{a}{\sqrt{3}}$$
Question7.

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right)$$
Put $x = a \tan \theta \Rightarrow \frac{x}{a} = \tan \theta \Rightarrow \theta = \tan^{-1} \frac{x}{a}$

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) = \tan^{-1}\left(\frac{3a^2 \cdot a \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a \cdot a^2 \tan^2 \theta}\right)$$

$$\tan^{-1}\left(\frac{3a^3 \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a^3 \tan^2 \theta}\right)$$

$$\tan^{-1}\left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}\right)$$

$$= \tan^{-1}(\tan 3\theta)$$

$$= 3\theta$$

$$= 3\tan^{-1}\frac{x}{a}$$

Find the values of each of the following:

$$\tan^{-1}\left[2\cos\left(2\frac{\sin^{-1}1}{2}\right)
ight]$$
 Question8.

Solution

Let
$$\sin^{-1} \frac{1}{2} = x$$
. Then $\sin x = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$
 $\therefore \sin^{-1} \frac{1}{2} = \frac{\pi}{6}$
 $\therefore \tan^{-1} \left[2\cos\left(2\frac{\sin^{-1}1}{2}\right) \right] = \tan^{-1} \left[2\cos\left(2 \times \frac{\pi}{6}\right) \right]$
 $= \tan^{-1} \left[2\cos\left(\frac{\pi}{3}\right) \right] = \tan^{-1} \left[2 \times \frac{1}{2} \right]$
 $= \tan^{-1} 1 = \frac{\pi}{4}$

$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], |x| < 1, y > 0 \text{ and } xy < 1$$
Question9.

Solution :

Let
$$x = \tan \theta$$
. Then, $\theta = \tan^{-1} x$.
 $\therefore \sin^{-1} \frac{2x}{1+x^2} = \sin^{-1} \left(\frac{2\tan \theta}{1+\tan^2 \theta}\right) = \sin^{-1}(\sin 2\theta) = 2\theta = 2\tan^{-1} x$
Let $y = \tan \theta$. Then, $\theta = \tan^{-1} y$.
 $\therefore \cos^{-1} \frac{1-y^2}{1+y^2} = \cos^{-1} \left(\frac{1-\tan^2 \phi}{1+\tan^2 \phi}\right) = \cos^{-1}(\cos 2\phi) = 2\phi = 2\tan^{-1} y$
 $\therefore \tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2}\right]$
 $= \tan \frac{1}{2} \left[2\tan^{-1} x + 2\tan^{-1} y\right]$
 $= \tan \left[\tan^{-1} x + \tan^{-1} y\right]$
 $= \tan \left[\tan^{-1} \left(\frac{x+y}{1-xy}\right)\right]$
 $= \frac{x+y}{1-xy}$

Find the values of each of the expressions in Exercises 16 to 18.

Question 10. $\sin^{-1}\left(\sin 2\frac{\pi}{3}\right)$

 $\sin^{-1}\left(\sin 2\frac{\pi}{3}\right)$

We know that $\sin^{-1}(\sin x) = x$ if x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin^{-1}x$.

Here, $2\frac{\pi}{3} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ Now $\sin^{-1}\left(\sin 2\frac{\pi}{3}\right)$ can be written as $\sin^{-1}\left(\sin \frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin \frac{\pi}{3}\right)$ where $\frac{\pi}{3} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ $\therefore \sin^{-1}\left(\sin \frac{2\pi}{2}\right) = \sin^{-1}\left(\sin \frac{\pi}{3}\right) = \frac{\pi}{3}$

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

Question11.

Solution

$$\tan^{-1}\left(\tan \frac{3\pi}{4}\right)$$

We know that $\tan^{-1}(\tan x) = x$ if $x \ln\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ which is the principal value branch of $\tan^{-1}x$. Here $\frac{3\pi}{4} \notin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ Now, $\tan^{-1}\left(\tan \frac{3\pi}{4}\right)$ can be witten as $\tan^{-1}\left(\tan \frac{3\pi}{4}\right) = \tan^{-1}\left[-\tan\left(\frac{-3\pi}{4}\right)\right] = \tan^{-1}\left[-\tan\left(\pi - \frac{\pi}{4}\right)\right]$ $= \tan^{-1}\left[-\tan \frac{\pi}{4}\right] = \tan^{-1}\left[\tan\left(-\frac{\pi}{4}\right)\right]$ where $-\frac{\pi}{4} \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ $\therefore \tan^{-1}\left(\tan \frac{3\pi}{4}\right) = \tan^{-1}\left[\tan\left(\frac{-\pi}{4}\right)\right] = \frac{-\pi}{4}$

 $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$ Question12.

Solution :

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5} \Rightarrow \sec x = \frac{5}{4}$
 $\therefore \tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$
 $\therefore x = \frac{\tan^{-1} 3}{4}$
 $\therefore \sin^{-1} \frac{3}{5} = \frac{\tan^{-1} 3}{4}$...(i)
Now $\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$...(ii) $\left[\tan^{-1} \frac{1}{x} = \cot^{-1} x\right]$
Hence, $\tan\left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2}\right)$
 $= \tan\left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3}\right)$ [Using i and ii]
 $= \tan\left(\tan^{-1} \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \cdot \frac{2}{3}}\right)$ $\left[\tan^{-1} x + \tan^{-1} y = \frac{\tan^{-1}(x + y)}{1} - xy\right]$
 $= \tan\left(\tan^{-1} \frac{9 + 8}{12 - 6}\right)$
 $= \tan\left(\tan^{-1} \frac{17}{6}\right) = \frac{17}{6}$

Question13.

Find the values of
$$\cos^{-1}\left(\cos \frac{7\pi}{6}\right)$$
 is equal to
(A) $\frac{7\pi}{6}$
(B) $\frac{5\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$

We know that $\cos^{-1}(\cos x) = x$ if x in $[0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

Here
$$rac{7\pi}{6}
otin x\in [0,\pi]$$

Now $\cos^{-1}\!\left(\cos rac{7\pi}{6}
ight)$ can be written as

 $1\cos 7\pi 6 = \cos - 1 - \cos 5\pi 6$ as, $\cos \pi - \theta = -\cos \theta$

$$\therefore \cos^{-1}\left(\cos \frac{7\pi}{6}\right) = \cos^{-1}\left(\cos \frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

The correct answer is B.

Question 14.
$$\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$$
 is equal to:

(A) 1/2

(C) 1/4

Solution

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = x$$
. Then $\sin x = \frac{-1}{2} = -\sin \frac{\pi}{6} = \sin\left(\frac{-\pi}{6}\right)$
We know that the range of the principal value branch of $\sin^{-1}is\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = \frac{-\pi}{6}$$
$$\therefore \sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

Therefore, option (D) is correct.

Question 15.
$$\tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right)$$
 is equal to:

(A) π

(B) -π/2

(C) 0

(D) 2√3

Solution

Let
$$\tan^{-1}\sqrt{3} = x$$
. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$ where $\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let $\cot^{-1} \left(-\sqrt{3} \right) = y$.

Then,
$$\cot y = -\sqrt{3} = -\cot\left(\frac{\pi}{6}\right) = \cot\left(\pi - \frac{\pi}{6}\right) = \cot\frac{5\pi}{6}$$
 where $\frac{5\pi}{6} \in (0, \pi)$.

The range of the principal value branch of \cot^{-1} is $(0, \pi)$.

$$\therefore \cot^{-1}\left(-\sqrt{3}\right) = \frac{5\pi}{6}$$
$$\therefore \tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6} = -\frac{\pi}{2}$$

Therefore, option (B) is correct. **Exercise 2.3, Page: 31**

Find the value of the following of NCERT Solutions for Class 12 Maths Chapter 2 Miscellaneous Exercise (Inverse Trigonometric Function)

Question1.
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

Here,
$$\frac{13\pi}{6} \notin [0,\pi]$$

Now $\cos^{-1}\left(\cos \frac{13\pi}{6}\right)$ can be written as
 $\cos^{-1}\left(\cos \frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right] = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right]$, where $\frac{\pi}{6} \in [0,\pi]$
 $\therefore \cos^{-1}\left(\cos \frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right] = \frac{\pi}{6}$
 $\tan^{-1}\left(\tan \frac{7x}{6}\right)$
Question2.

Solution

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$. 7π (π π)

Here
$$\frac{1\pi}{6} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Now $\tan^{-1}\left(\tan \frac{7\pi}{6}\right)$ can be written as
 $\tan^{-1}\left(\tan \frac{7\pi}{6}\right) = \tan^{-1}\left[\tan\left(2\pi - \frac{5\pi}{6}\right)\right] \quad [\tan(2\pi - x) = -\tan x]$
 $= \tan^{-1}\left[-\tan\left(\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(\frac{-5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(\pi - \frac{5\pi}{6}\right)\right]$
 $= \tan^{-1}\left[\tan\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 $\therefore \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right)$

Question3. Prove that: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$

Let
$$\sin^{-1} \frac{3}{5} = x$$
, Then $\sin x = \frac{3}{5}$
=> $\cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4}$
 $\therefore x = \tan^{-1} \frac{3}{4} \Rightarrow \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$

Now, we have:

L.H.S =
$$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$$

= $\tan^{-1}\left(\frac{2\times\frac{3}{4}}{1-(\frac{3}{4})^2}\right) \left[2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}\right]$
= $\tan^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right) = \tan^{-1}\left(\frac{3}{2}\times\frac{16}{7}\right)$
= $\tan^{-1}\frac{24}{7} = \text{R.H.S}$

Solution :

Question 4. Prove that:
$$\frac{\sin^{-1}}{17} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$$

Let
$$\sin^{(-1)} 8/17 = x$$
. Then $\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{289}} = \frac{15}{17}$
 $\therefore \tan x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$
 $\therefore \sin^{-1} \frac{8}{17} = \tan^{-1} \frac{8}{15}$ (1)
Now let $\sin^{-1} \frac{3}{5} = y$. Then $\sin y = \frac{3}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
 $\therefore \tan y = \frac{3}{4} \Rightarrow \quad y = \tan^{-1} \frac{3}{4}$
 $\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$ 2
Now, we have:
LH.S = $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$
 $= \tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$ [Using 1 and 2]
 $= \tan^{-1} \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$
 $= \tan^{-1} \left(\frac{32 + 45}{60 - 24}\right)$ $\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}\right]$
 $= \tan^{-1} \frac{77}{36} = \text{RH.S}$

Question 5. Prove that: $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$

Let
$$\cos^{-1} \frac{4}{5} = x$$
. Then, $\cos x = \frac{4}{5} \Rightarrow \sin x = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$
 $\therefore \cos^{-1} \frac{4}{5} - \tan^{-1} \frac{3}{4}$...(1)
Now let $\cos^{(-1)} \frac{12}{13} = y$ Then $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
 $\therefore \cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12} - -2$
Let $\cos^{-1} \frac{33}{65} = z$. Then $\cos z = \frac{33}{65} \Rightarrow \sin z = \frac{56}{65}$
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$ (3)

Now, we will prove that:

L.H.S =
$$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$$

= $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{5}{12}$ [Using 1 and 2]
= $\tan^{-1} \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}$ [$\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$]
= $\tan^{-1} \frac{36+20}{48-15}$
= $\tan^{-1} \frac{56}{33}$
= $\tan^{-1} \frac{56}{33}$ [by(3)]
= R.H.S

$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$$

Question6. Prove that:

Solution
Let
$$\sin^{(-1)} 3/5 = x$$
. Then $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$
 $\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4} \quad \dots(1)$
Now let $\cos^{-1} \frac{12}{13} = y$. Then $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$
 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
 $\therefore \cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12} \quad \dots(2)$
Let $\sin^{-1} \frac{56}{65} = z$ Then $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$
 $\therefore \sin^{-1} \frac{56}{65} = \tan^{-1} \frac{56}{33} \quad \dots(3)$
Now, we have:

L.H.S =
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$ [Using 1 and 2]
= $\tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}} \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$
= $\tan^{-1} \frac{20 + 36}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\sin^{-1} \frac{56}{65}$ = R.H.S [Using (3)]

 $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$ Question7. Prove that:

Let $\sin^{-1}(-1) 5/13 = x$. Then, $\sin x = \frac{5}{13} \Rightarrow \cos x = \frac{12}{13}$ $\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$ $\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$...(1) Let $\frac{\cos^{-1}3}{5} = y$. Then $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$ $\therefore \tan y = \frac{4}{2} \Rightarrow y = \tan^{-1} \frac{4}{2}$ $\therefore \frac{\cos^{-1}3}{5} = \tan^{-1}\frac{4}{3}$...(2) Using (1) and (2), we have R.H.S = $\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$ $= \tan^{-1} \frac{5}{12} + \cos^{-1} \frac{4}{5}$ $= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{2}$ $y = an^{-1} igg(rac{5}{12} + rac{4}{3} \ 1 - rac{5}{12} imes rac{4}{2} igg) \ \left[an^{-1} x + an^{-1} y = rac{ an^{-1} (x+y)}{1-xy}
ight]$ $= an^{-1} \left(rac{15+48}{36-20}
ight)$ $= \tan^{-1} \frac{63}{16}$ = L.H.S

$$an^{-1}\sqrt{x}=rac{1}{2} ext{cos}^{-1}igg(rac{1-x}{1+x}igg),x\in[0,1]$$
 that:

Question8. Prove that:

Solution

Let
$$x = \tan^2 \theta$$
 Then $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$
 $\therefore \frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$

Now we have

R.H.S =
$$\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}(\cos 2\theta) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = L.H.S$$

$$\cot^{-1}\left(rac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}
ight)=rac{x}{2}$$
 , $x\in\left(0,rac{\pi}{4}
ight)$

Prove that 9:

Solution

$$\begin{aligned} & \text{Consider}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2} \ x \in \left(0, \frac{\pi}{4}\right) \\ &= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2} \qquad \text{(by rationalizing)} \\ &= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x - 1 + \sin x} \\ &= \frac{2\left(1+\sqrt{1-\sin^2 x}\right)}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}} \\ &= \frac{\cot x}{2} \\ &: \text{L.H.S} = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \cot^{-1}\left(\frac{\cot x}{2}\right) = \frac{x}{2} = R.H.S \end{aligned}$$

Question 10.Provethat:

$$\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x - \frac{1}{\sqrt{2}} \le x \le 1 \text{ [Hint: put x = } \cos 2\theta]$$

Put x = cos 2
$$\theta$$
 so that $\theta = \frac{1}{2}$ cos⁻¹ x Then we have
L.H.S = tan⁻¹ $\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$
= tan⁻¹ $\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}\right)$
= tan⁻¹ $\left(\frac{\sqrt{2\cos^2\theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta} + \sqrt{2\sin^2\theta}}\right)$
tan⁻¹ $\left(\frac{\sqrt{2}\cos\theta - \sqrt{2}\sin\theta}{\sqrt{2}\cos\theta + \sqrt{2}\sin\theta}\right)$
= tan⁻¹ $\left(\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}\right) = tan^{-1} \left(\frac{1-tan^{\theta}}{1+tan\theta}\right)$
= tan⁻¹ 1 - tan⁻¹(tan θ) $\left[tan^{-1}\left(\frac{x-y}{1+xy}\right) = tan^{-1}x - tan^{-1}y\right]$
= $\frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2}cos^{-1}x = R.H.S$

Question 12. Prove that:
$$\frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3} = \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}$$

L.H.S =
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}$$

= $\frac{9}{4}\left(\frac{\pi}{2} - \sin^{-1}\frac{1}{3}\right)$
= $\frac{9}{4}\left(\cos^{-1}\frac{1}{3}\right)$ (1) $\left[\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$
Now, let $\cos^{-1}\frac{1}{3} = x$ Then, $\cos x = \frac{1}{3} \Rightarrow \sin x = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$
 $\therefore x = \frac{\sin^{-1}\left(2\sqrt{2}\right)}{3} \Rightarrow \cos^{-1}\frac{1}{3} = \sin^{-1}\frac{2\sqrt{2}}{3}$
 $\therefore L.H.S = \frac{9}{4}\sin^{-1}\frac{2\left(\sqrt{2}\right)}{3} = R.H.S$

Question 13. Solve the equation: $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \cos ecx)$

Solution

$$2\tan^{-1}(\cos x) = \tan^{-1}(2\cos ecx)$$

$$\Rightarrow \tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{1}(2\cos ecx) \quad \left[2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x}\right]$$

$$\Rightarrow \frac{2\cos x}{1-\cos^2 x} = 2\cos ecx$$

$$\Rightarrow \frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$\Rightarrow \cos x = \sin x$$

$$\Rightarrow \tan x = 1$$

$$\therefore x = \frac{\pi}{4}$$

Question13.

Solve sin (tan⁻¹ x), |x| < 1 is equal to (A) $\frac{x}{\sqrt{1-x^2}}$ (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$

(D)
$$\frac{x}{\sqrt{1+x^2}}$$

Solution :

Let
$$\tan^{-1} x = y$$
. Then, $\tan y = x \Rightarrow \sin y = \frac{x}{\sqrt{1+x}}$
 $\therefore y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \Rightarrow \tan^{-1} x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$
 $\therefore \sin(\tan^{-1} x) = \sin\left(\sin^{-1} \frac{x}{\sqrt{1+x^2}}\right) = \frac{x}{\sqrt{1+x^2}}$

Therefore, option (D) is correct.

Question14.

Solve
$$\sin^{-1}(1 - x) - 2 \sin^{-1} x = \frac{\pi}{2}$$
, then *x* is equal to
(A) 0, $\frac{1}{2}$
(B) 1, $\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$

$$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$

$$\Rightarrow -2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$$

$$\Rightarrow -2\sin^{-1}x = \cos^{-1}(1-x)....(1)$$

Let $\sin^{-1}x = \theta \Rightarrow = x \Rightarrow \cos\theta = \sqrt{1-x^2}$

$$\therefore \theta = \cos^{-1}(\sqrt{1-x^2})$$

$$\therefore \sin^{-1}x = \cos^{-1}(\sqrt{1-x^2})$$

Therefore, from equation (1), we have

$$-2\cos^{-1}\Bigl(\sqrt{1-x^2}\Bigr) = \cos^{-1}(1-x)$$

$$-2\cos^{-1}\left(\sqrt{1-\sin^2 y}\right) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2\cos^{-1}(\cos y) = \cos^{-1}(1-\sin y)$$

$$\Rightarrow -2y = \cos^{-1}(1-\sin y)$$

$$\Rightarrow 1 - \sin y = \cos(-2y) = \cos 2y$$

$$\Rightarrow 1 - \sin y = 1 - 2\sin^2 y$$

$$\Rightarrow 2\sin^2 y - \sin y = 0$$

$$\Rightarrow \sin y(2\sin y - 1) = 0$$

$$\Rightarrow \sin y(2\sin y - 1) = 0$$

$$\Rightarrow \sin y = 0 \text{ or } \frac{1}{2}$$

$$\therefore x = 0 \text{ or } x = \frac{1}{2}$$

But, when
$$x = \frac{1}{2}$$
, it can be observed that:
L.H.S = $\sin^{-1}\left(1 - \frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$
 $= \sin^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$
 $= \sin^{-1}\frac{1}{2}$
 $= -\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text{R.H.S}$

:. x = 1/2 is not the solution of the given equation.

Thus, x = 0.

Therefore, option (C) is correct.