Exercise 2.1

Page No: 41

Find the principal values of the following:

1. $(-\frac{1}{2})$ sin⁻¹

Solution 1: Consider y = $\sin^{-1} \left(-\frac{1}{2}\right)$

Solve the above equation, we have sin y = -1/2 We know that sin $\pi/6 = \frac{1}{2}$ So, sin y = - sin $\pi/6$ sin y = sin $\left(-\frac{\pi}{6}\right)$ Since range of principle value of sin⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Principle value of $\sin^{-1}(-\frac{1}{2})$ is $-\pi/6$.

Solution 2:

Let y = $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Cos y = cos
$$\pi/6$$
 (as cos $\pi/6 = \sqrt{3}/2$)

у = п/6

Since range of principle value of \cos^{-1} is $[0, \pi]$

Therefore, Principle value of
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 is $\pi/6$

Let
$$y = \text{Cosec}^{-1}(2)$$

Cosec y = 2

We know that, $\csc \pi / 6 = 2$

So Cosec y = cosec π /6

Since range of principle value of cosec⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Therefore, Principle value of Cosec⁻¹ (2) is $\Pi/6$.

Solution 4: $\tan^{-1}(-\sqrt{3})$

Let $y = \tan^{-1}(-\sqrt{3})$

 $\tan y = - \tan \pi/3$

or tan y = tan $(-\pi/3)$

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Since range of principle value of tan⁻¹ is

Therefore, Principle value of $\tan^{-1}(-\sqrt{3})$ is $-\pi/3$.

 $\cos^{-1}\left(\frac{-1}{2}\right)$ Solution 5: $\cos^{-1}\left(\frac{-1}{2}\right)$ v =

 $\cos y = -1/2$

$$\cos y = -\cos \frac{\pi}{3}$$

$$\cos y = \cos(\pi - \pi/3) = \cos(2\pi/3)$$

Since principle value of \cos^{-1} is $[0, \pi]$

Therefore, Principle value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is $2\pi/3$.

```
Let y = \tan^{-1}(-1)
```

tan(y) = -1

 $\tan y = -\tan \pi/4$

$$\tan y = \tan\left(-\frac{\pi}{4}\right)$$

Since principle value of \tan^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, Principle value of $tan^{-1}(-1)$ is $-\pi/4$.

Solution 7:

$$sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

$$y = \frac{sec^{-1}\left(\frac{2}{\sqrt{3}}\right)}{sec y = 2/\sqrt{3}}$$

$$sec y = sec\frac{\pi}{6}$$

Since principle value of sec⁻¹ is $[0, \pi]$

Therefore, Principle value of

$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 is $\pi/6$

Solution 8: $\cot^{-1}(\sqrt{3})$

 $y = \frac{\cot^{-1}(\sqrt{3})}{\sqrt{3}}$ $\cot y = \sqrt{3}$

cot y = п/6

Since principle value of \cot^{-1} is $[0, \pi]$

Therefore, Principle value of $\cot^{-1}(\sqrt{3})$ is $\pi/6$.

Solution 9: $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$

Let y =
$$\frac{\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)}{1}$$

$$\cos y = -\frac{1}{\sqrt{2}}$$
$$\cos y = -\cos\frac{\pi}{4}$$
$$\cos y = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}$$

Since principle value of \cos^{-1} is [0, π]

Therefore, Principle value of
Cos⁻¹
$$\left(\frac{-1}{\sqrt{2}}\right)$$
 is 3 n/4.
Solution 10. $\cos ec^{-1}\left(-\sqrt{2}\right)$
Ley $y = \cos ec^{-1}\left(-\sqrt{2}\right)$
 $\cos ec \ y = -\sqrt{2}$
 $\cos ec \ y = \cos ec \ \frac{-\pi}{4}$
Since principle value of $\csc c^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, Principle value of $\csc c^{-1}\left(-\sqrt{2}\right)$ is – $\pi/4$

Find the values of the following:

11.
$$\tan^{-1}(1) + \cos^{-1} - \frac{1}{2} + \sin^{-1} - \frac{1}{2}$$

12. $\cos^{-1} \frac{1}{2} + 2\sin^{-1} \frac{1}{2}$

- 13. If $\sin^{-1} x = y$, then
- (A) $0 \le y \le \pi$
- $(\mathsf{B}) \frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
- (C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- 14. tan⁻¹ ($\sqrt{3}$) sec ⁻¹ (-2) is equal to
- **(A)** π
- (B) π/3
- (C) π/3
- (D) 2 π/3

tan⁻¹(1) + cos⁻¹ $\left(\frac{-1}{2}\right)$ + sin⁻¹ $\left(\frac{-1}{2}\right)$ Solution 11.

$$= \tan^{-1} \tan \frac{\pi}{4} + \cos^{-1} \left(-\cos \frac{\pi}{3} \right) + \sin^{-1} \left(-\sin \frac{\pi}{6} \right)$$

$$= \frac{\pi}{4} + \cos \left(\pi - \frac{\pi}{3} \right) + \sin^{-1} \sin \left(-\frac{\pi}{6} \right)$$

$$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$$

$$= \frac{3\pi + 8\pi - 2\pi}{12}$$

$$= \frac{9\pi}{12} = \frac{3\pi}{4}$$

Solution 12:

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$
 $\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$
 $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
Now,
 $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6}$
 $= \frac{\pi}{3} + \frac{\pi}{3}$
 $= \frac{2\pi}{3}$

Solution 13: Option (B) is correct.

Given $\sin^{-1} x = y$,

The range of the principle value of sin⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Solution 14:

Option (\underline{B}) is correct.

tan⁻¹ ($\sqrt{3}$) - sec ⁻¹ (-2) = tan⁻¹ (tan π/3) - sec⁻¹ (-sec π/3) = π/3 - sec⁻¹ (sec (π - π/3)) = π/3 - 2π/3 = - π/3

Exercise 2.2

Page No: 47

Prove the following

1.

$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Solution:

 $3\sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ (Use identity: $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$)

Let $x = \sin\theta$ then

$$\theta = \sin^{-1} x$$

Now, RHS

 $=\sin^{-1}(3x-4x^3)$

$$= \sin^{-1}(3\sin\theta - 4\sin^3\theta)$$

 $= \sin^{-1}(\sin 3 \theta)$

= 3 sin⁻¹ x

= LHS

Hence Proved

2.

$$3\cos^{-1}x = \cos^{-1}(4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Solution:

$$3\cos^{-1} x = \cos^{-1} (4x^{3} - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Using identity: $\cos 3\theta = 4\cos^{3} \theta - 3\cos \theta$
Put x = $\cos \theta$
 $\theta = \cos^{-1} (x)$
Therefore, $\cos 3 \theta = 4x^{3} - 3x$
RHS:
 $\cos^{-1} (4x^{3} - 3x)$
= $\cos^{-1} (\cos 3 \theta)$
= 3θ
= $3\cos^{-1} (x)$
= LHS

Hence Proved.

3. $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$

Solution:

$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$$
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$
Using identity:

LHS =
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24}$$
$$= \tan^{-1} \frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \times \frac{7}{24}}$$
$$= \tan^{-1} \frac{48 + 77}{264 - 14}$$
$$= \tan^{-1} (125/250)$$
$$= \tan^{-1} (1/2)$$
$$= \text{RHS}$$

Hence Proved

4.

$$2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$$

Solution:

Use identity:
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$$
.

LHS

$$= \frac{2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}}{7}$$

$$= \tan^{-1} \frac{2 \times \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} + \tan^{-1} \frac{1}{7}$$

Again using identity:

 $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$

We have,

$$\tan^{-1} \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \times \frac{1}{7}}$$
$$= \tan^{-1}(\frac{28 + 3}{21 - 4})$$
$$= \tan^{-1}(31/17)$$

RHS

Write the following functions in the simplest form:

$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}, x \neq 0$$

Solution:

Let's say $x = \tan \theta$ then $\theta = \tan^{-1} x$

We get,

$$\tan^{-1}\frac{\sqrt{1+x^2}-1}{x} = \tan^{-1}\left(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right)$$

$$= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right)$$
$$= \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right)$$
$$= \tan^{-1} \left(\frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right)$$
$$= \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$$

This is simplest form of the function.

6.
$$\tan^{-1} \frac{1}{\sqrt{x^2 - 1}}$$
, $|x| > 1$

Solution:

Let us consider, $x = \sec \theta$, then $\theta = \sec^{-1} x$

$$\tan^{-1} \frac{1}{\sqrt{x^2 - 1}} = \tan^{-1} \frac{1}{\sqrt{\sec^2 \theta - 1}}$$
$$= \tan^{-1} \frac{1}{\sqrt{\tan^2 \theta}}$$
$$= \tan^{-1} \left(\frac{1}{\tan \theta}\right)$$
$$= \tan^{-1} (\cot \theta)$$
$$= \tan^{-1} \tan(\pi/2 - \theta)$$
$$= (\pi/2 - \theta)$$

 $= \pi/2 - \sec^{-1} x$

This is simplest form of the given function.

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ 0 < x < \pi$$

Solution:

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}}\right)$$
$$= \tan^{-1}\left(\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)$$
$$= \tan^{-1}\left(\tan\frac{x}{2}\right) = \frac{x}{2}$$

$$\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right), \frac{-\pi}{4} < x < \frac{3\pi}{4}$$
8.

Solution:

Divide numerator and denominator by cos x, we have

$$\tan^{-1}\left(\frac{\frac{\cos(x)}{\cos(x)} - \frac{\sin(x)}{\cos(x)}}{\frac{\cos(x)}{\cos(x)} + \frac{\sin(x)}{\cos(x)}}\right)$$
$$= \tan^{-1}\left(\frac{1 - \frac{\sin(x)}{\cos(x)}}{1 + \frac{\sin(x)}{\cos(x)}}\right)$$
$$= \tan^{-1}\left(\frac{1 - \tan x}{1 + \tan x}\right)$$

$$\tan^{-1}\left(\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4}\tan x}\right)$$
$$= \tan^{-1}\tan(\pi/4 - x)$$
$$= \pi/4 - x$$

9.
$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
, $|x| < a$

Solution:

Put x = a sin
$$\theta$$
, which implies sin θ = x/a and θ = sin⁻¹(x/a)

Substitute the values into given function, we get

$$\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2 - a^2\sin^2\theta}}\right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}} \right)$$
$$= \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta} \right)$$

= tan⁻¹(tan θ)

$$= \sin^{-1}(x/a)$$

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), a > 0; \ \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$$
10.

Solution:

After dividing numerator and denominator by a^3 we have

Put x/a = tan θ and θ = tan⁻¹(x/a)

$$= \tan^{-1} \left(\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} \right)$$
$$= \tan^{-1} (\tan 3\theta)$$
$$= 3\theta$$
$$= 3\tan^{-1} (x/a)$$

Find the values of each of the following:

$$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$$

Solution:

$$= \tan^{-1} \left[2\cos\left(2\sin^{-1}\sin\frac{\pi}{6}\right) \right]$$
$$= \tan^{-1} \left[2\cos\left(2\times\frac{\pi}{6}\right) \right]$$
$$= \tan^{-1} (2\cos\pi/3)$$
$$= \tan^{-1} (2\times\frac{1}{2})$$
$$= \tan^{-1} (1)$$
$$= \tan^{-1} (\tan(\pi/4))$$
$$= \pi/4$$

12. cot (tan⁻¹a + cot⁻¹a)

Solution:

 $\cot(\tan^{-1}a + \cot^{-1}a) = \cot \pi/2 = 0$

Using identity: $\tan^{-1}a + \cot^{-1}a = \pi/2$

13.

$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], |x| < 1, y > 0 \text{ and } xy < 1$$

Solution:

Put x = tan θ and y = tan Φ , we have

$$\tan\frac{1}{2}\left[\sin^{-1}\frac{2\tan\theta}{1+\tan^2\theta}+\cos^{-1}\frac{1-\tan^2\phi}{1+\tan^2\phi}\right]$$

$$= \tan \frac{1}{2} [\sin^{-1} \sin 2\theta + \cos^{-1} \cos 2\theta]$$

$$= \tan (1/2) [2\theta + 2\theta]$$

$$= \tan (\theta + \Phi)$$

$$= \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$

$$= (x+y) / (1-xy)$$
14. If $\sin \left(\sin^{-1} \frac{1}{5} + \cos^{-1} x \right) = 1$, then find the value of x.

Solution:

We know that, sin 90 degrees = sin $\pi/2 = 1$

So, given equation turned as,

$$\sin^{-1}\frac{1}{5} + \cos^{-1}x = \frac{\pi}{2}$$
$$\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}\frac{1}{5}$$

Using identity: $\sin^{-1} t + \cos^{-1} t = \pi/2$

 $\cos^{-1} x = \cos^{-1} \frac{1}{5}$

Which implies, the value of x is 1/5.

 $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$, then find the value of x.

Solution:

We have.

We have reduced the given equation using below identity:

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$
$$\tan^{-1} \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)} = \frac{\pi}{4}$$

or

$$\tan^{-1}\frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2) - (x-1)(x+1)} = \frac{\pi}{4}$$

or

$$\tan^{-1} \frac{x^2 + 2x - x - 2 + x^2 - 2x + x - 2}{x^2 - 4 - (x^2 - 1)} = \frac{\pi}{4}$$

or $\frac{2x^2 - 4}{x^2 - 4 - x^2 + 1} = \tan\left(\frac{\pi}{4}\right)$
or $(2x^2 - 4)/-3 = 1$
or $2x^2 = 1$
or $x = \pm \frac{1}{\sqrt{2}}$

The value of x is either $\frac{1}{\sqrt{2}} \ or - \frac{1}{\sqrt{2}}$

Find the values of each of the expressions in Exercises 16 to 18.

16.
$$\sin^{-1}(\sin{(\frac{2\pi}{3})})$$

Solution:

Given expression is $\sin^{-1}(\sin\left(\frac{2\pi}{3}\right))$

First split $\frac{2\pi}{3}$ as $\frac{(3\pi-\pi)}{3}$ or $\pi-\frac{\pi}{3}$

After substituting in given we get,

$$\sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}(\sin(\pi - \frac{\pi}{3})) = \frac{\pi}{3}$$

Therefore, the value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ is $\frac{\pi}{3}$

17.
$$tan^{-1}(tan \binom{3\pi}{4})$$

Solution:

Given expression is $tan^{-1}(tan(\frac{3\pi}{4}))$

First split $\frac{3\pi}{4}$ as $\frac{(4\pi-\pi)}{4}$ or $\pi-\frac{\pi}{4}$

After substituting in given we get,

$$\tan^{-1}(\tan{\binom{3\pi}{4}}) = \tan^{-1}(\tan(\pi - \frac{\pi}{4})) = -\frac{\pi}{4}$$

The value of $tan^{-1}(tan \binom{3\pi}{4})$ is $\frac{-\pi}{4}$

18.
$$(\frac{3}{5}) + \cot^{-1}\frac{3}{2}$$

 $\tan(\sin^{-1})$

Solution:

Given expression is
$$\tan(\sin^{-1} \ ^3 + \cot^{-1} \ ^3)$$

 $- \ (5) \ - \ 2$
Putting, $\sin^{-1} \ (^3) = x$ and $\cot^{-1}(^3) = y$

5

-

2

_

Or sin(x) = 3/5 and cot y = 3/2

Now, $\sin(x) = 3/5 \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = 4/5$ and $\sec x = 5/4$

(using identities: $\cos x = \sqrt{1 - \sin^2 x}$ and $\sec x = 1/\cos x$)

Again, $\tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$ and $\tan y = \frac{1}{\cot(y)} = \frac{2}{3}$

Now, we can write given expression as,

 $\tan(\sin^{-1} \ {}^{3} + \cot^{-1} \ {}^{3} = \tan(x + y)$ $\begin{pmatrix} - \\ - \\ 5 \end{pmatrix} \qquad - \\ \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}}$

= 17/6

19. $\cos^{-1}(\cos\frac{7\pi}{6})$ is equal to (A) $7\pi/6$ (B) $5\pi/6$ (C) $\pi/3$ (D) $\pi/6$

Solution:

Option (B) is correct.

Explanation:

$$\cos^{-1}(\cos\frac{7\pi}{6}) = \cos^{-1}(\cos(2\pi - \frac{7\pi}{6}))$$
(As cos (2 \pi - A) = cos A)
Now 2\pi - \frac{7\pi}{6} = \frac{12\pi - 7\pi}{6} = \frac{5\pi}{6}

20.
$$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$$
 is equal to

(A) ¹/₂ (B) 1/3 (C) ¹/₄ (D) 1

Solution:

Option (D) is correct

Explanation:

First solve for: $\sin^{-1}(-\frac{1}{2})$

$$\sin^{-1}\left(-\frac{1}{2}\right) = \sin^{-1}\left(-\sin\frac{\pi}{6}\right) = \sin^{-1}\left[\sin\left(-\frac{\pi}{6}\right)\right]$$

Again,

$$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$$
$$= \sin\left[\frac{\pi}{3} - \left(-\frac{\pi}{6}\right)\right]$$
$$= \sin\left[\frac{\pi}{3} + \frac{\pi}{6}\right]$$
$$= \sin(\pi/2)$$
$$= 1$$

21. tan⁻¹ $\sqrt{3}$ – cot⁻¹ (- $\sqrt{3}$) is equal to

(A) π (B) $-\pi/2$ (C) 0 (D) $2\sqrt{3}$

Solution:

Option (B) is correct.

Explanation:

 $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ can be written as

Miscellaneous Exercise

 $1.\cos^{-1}(\cos\frac{13\pi}{6})$

Solution:

First solve for, $\cos \frac{13\pi}{6} = \cos(2\pi + \frac{\pi}{6}) = \cos \frac{\pi}{6}$

Now: $\cos^{-1}(\cos\frac{13\pi}{6}) = \cos^{-1}(\cos\frac{\pi}{6}) = \frac{\pi}{6} \in [0, \pi]$

[As $\cos^{-1} \cos(x) = x$ if $x \in [0, \pi]$] he value of $\cos^{-1}(\cos \frac{13\pi}{6})$ is π .

2.
$$tan^{-1}(tan \frac{7\pi}{6})$$

Solution:

First solve for, $\tan \frac{7\pi}{6} = \tan(\pi + \frac{\pi}{6}) = \tan \frac{\pi}{6}$ Now: $\tan^{-1}(\tan \frac{7\pi}{6}) = \tan^{-1}(\tan \frac{\pi}{6}) = \frac{\pi}{6} \in (-\pi/2, \pi/2)$

[As $tan^{-1} tan(x) = x$ if $x \in (-\pi/2, \pi/2)$]

So the value of $tan^{-1}(tan \frac{7\pi}{6})$ is $\frac{\pi}{6}$

3. Prove that
$$2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$$

Solution:

Step 1: Find the value of cos x and tan x

Let us considersin⁻¹
$$\frac{3}{5} = x$$
, then sin x = 3/5
So, cos x = $\sqrt{1 - \sin^2 x} = \sqrt{1 - (\frac{3}{5})^2} = 4/5$

 $\tan x = \sin x / \cos x = \frac{3}{4}$

Therefore, $x = \tan^{-1}(3/4)$, substitute the value of x,

$$\Rightarrow \sin^{-1}\frac{3}{5} = \tan^{-1}(\frac{3}{4}) \dots (1)$$

Step 2: Solve LHS

$$2\sin^{-1}\frac{3}{2} = 2\tan^{-1}\frac{3}{4}$$

5 4

Using identity: $2\tan^{-1} x = \tan^{-1} = \tan^{-1}(\frac{2x}{1-x^2})$, we get

$$= \tan^{-1}\left(\frac{2\binom{3}{4}}{1-\binom{3}{4}^{2}}\right)$$

$$= \tan^{-1}(24/7)$$

= RHS

Hence Proved.

4. Prove that $\sin^{-1} \frac{8}{1} + \sin^{-1} \frac{3}{2} = \tan^{-1} \frac{77}{36}$

Solution:

Let
$$\sin^{-1}(\frac{8}{17}) = x$$
 then $\sin x = 8/17$

Again, $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{64}{289}} = 15/17$

And
$$\tan x = \sin x / \cos x = 8/15$$

Again,

Let
$$\sin^{-1} {3 \choose 5} = y$$
 then sin y = 3/5

Again,
$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \frac{9}{25}} = 4/5$$

And tan y = sin y / cos y = $\frac{3}{4}$

Solve for tan(x + y), using below identity,

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
$$= \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$$
$$= \frac{32 + 45}{60 - 24}$$
$$= 77/36$$

This implies $x + y = \tan^{-1}(77/36)$

Substituting the values back, we have

$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$
 (Proved)

5. Prove that
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

Solution:

Let
$$\cos^{-1}\frac{4}{5} = \theta$$

 $\cos \theta = \frac{4}{5}$
 $\sin \theta = \sqrt{1 - \cos^2 \theta}$
 $= \sqrt{1 - \frac{16}{25}}$
 $= \frac{3}{5}$
Let $\cos^{-1}\frac{12}{13} = \phi$
 $\cos \phi = \frac{12}{13}$
 $\sin \phi = \sqrt{1 - \cos^2 \phi}$
 $= \sqrt{1 - \frac{144}{169}}$
 $= \frac{5}{13}$

Solve the expression, Using identity: $\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$

= 4/5 x 12/13 - 3/5 x 5/13

= (48-15)/65

This implies $\cos(\theta + \phi) = 33/65$

or $\theta + \phi = \cos^{-1}(33/65)$

Putting back the value of θ and ϕ , we get

$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

Hence Proved.

6. Prove that
$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

Solution:

Let
$$\cos^{-1}\frac{12}{13} = \theta$$

So $\cos \theta = \frac{12}{13}$
 $\sin \theta = \sqrt{1 - \cos^2 \theta}$
 $= \sqrt{1 - \frac{144}{169}}$
 $= \frac{5}{13}$
Let $\sin^{-1}\frac{3}{5} = \phi$
So $\sin \phi = \frac{3}{5}$
 $\cos \phi = \sqrt{1 - \sin^2 \phi}$
 $= \sqrt{1 - \frac{9}{25}}$
 $= \frac{4}{5}$

Solve the expression, Using identity: $\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$

= 5/13 x 4/5 + 12/13 x 3/5

= (20+36)/65

= 56/65

or sin $(\theta + \phi) = 56/65$

or $\theta + \phi$) = sin⁻¹ 56/65

Putting back the value of θ and ϕ , we get

$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

Hence Proved.

7. Prove that
$$\tan^{-1}(\frac{63}{2}) = \sin -1(\frac{5}{2}) + \cos -1(\frac{3}{2})$$

16 13 (5)

Solution:

Let
$$\sin^{-1}\frac{5}{13} = \theta$$

so $\sin \theta = \frac{5}{13}$
 $\cos \theta = \sqrt{1 - \sin^2 \theta}$
 $= \sqrt{1 - \frac{25}{169}}$
 $= \frac{12}{13}$
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{12}$
Let $\cos^{-1}\frac{3}{5} = \phi$
so $\cos \phi = \frac{3}{5}$
 $\sin \phi = \sqrt{1 - \cos^2 \phi}$
 $= \sqrt{1 - \frac{9}{25}}$
 $= \frac{4}{5}$
 $\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{4}{3}$

Solve the expression, Using identity:

$$\tan\left(\theta+\phi\right) = \frac{\tan\theta + \tan\phi}{1-\tan\theta\tan\phi}$$
$$= \frac{\frac{5}{12+3}}{1-\frac{5}{12}\times\frac{4}{3}}$$
$$= 63/16$$

 $(\theta + \phi) = \tan^{-1} (63/16)$

Putting back the value of θ and ϕ , we get

$$\tan^{-1}\left(\frac{63}{16}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$$

Hence Proved.

Solve above expressions, using below identity:

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$$
$$= \tan^{-1} \left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} + \frac{1}{7}} \right) + \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} + \frac{1}{8}} \right)$$

After simplifying, we have

 $= \tan^{-1}(6/17) + \tan^{-1}(11/23)$

Again, applying the formula, we get

$$= \tan^{-1} \left(\frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \times \frac{11}{23}} \right)$$

After simplifying,

 $= \tan^{-1}(1)$

9. Prove that
$$\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x} \times \in (0, 1)$$

Solution:

Let
$$\tan^{-1}\sqrt{x} = \theta$$
, then $\sqrt{x} = \tan \theta$

Squaring both the sides

$$\tan^2 \theta = x$$

Now, substitute the value of x in $\frac{1}{2}\cos^{-1}\frac{1-x}{1+x}$, we get

$$= \frac{1}{2}\cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right)$$

 $= \frac{1}{2} \cos (1) \cos (2\theta)$

 $= \frac{1}{2} (2 \theta)$

= θ

$$= \tan^{-1} \sqrt{x}$$

10. Prove that
$$\cot^{-1}(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}) = \frac{x}{2}, x \in (0, \pi/4)$$

Solution:

We can write 1+ sin x as,

$$1 + \sin x = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\cos \frac{x}{2}\sin \frac{x}{2} = \left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2$$

And

$$1 - \sin x = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\cos \frac{x}{2}\sin \frac{x}{2} = \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2$$

LHS:

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right)$$

= $\cot^{-1}\left[\frac{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) + \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)}{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) - \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)}\right]$
= $\cot^{-1}\left(\frac{2\cos(\frac{x}{2})}{2\sin(\frac{x}{2})}\right)$
= $\cot^{-1}\left(\cot(x/2)\right)$
= $x/2$
11. Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, -\frac{1}{\sqrt{2}} \le x \le 1$

[Hint: Put $x = \cos 2 \theta$]

Solution:

Put
$$x = \cos 2\theta$$
 so, $\theta = \frac{1}{2}\cos^{-1}x$
LHS = $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$
= $\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}\right)$
= $\tan^{-1}\left(\frac{\sqrt{2\cos^2\theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta} + \sqrt{2\sin^2\theta}}\right)$

$$= \tan^{-1} \left(\frac{\sqrt{2}\cos\theta - \sqrt{2}\sin\theta}{\sqrt{2}\cos\theta + \sqrt{2}\sin\theta} \right)$$

Divide each term by $\sqrt{2}$ cos θ

$$= \tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right)$$
$$= \tan^{-1} \left(\frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta} \right)$$
$$= \tan^{-1} \tan \left(\frac{\pi}{4} - \theta \right)$$
$$= \frac{\pi}{4} - \theta$$
$$= \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$$

Hence proved

12. Prove that
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$$

Solution:

LHS =
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}$$

= $\frac{9}{4}\left(\frac{\pi}{2} - \sin^{-1}\frac{1}{3}\right)$
= $\frac{9}{4}\cos^{-1}\frac{1}{3}$
.....(1)

(Using identity: $\sin^{-1}\theta + \cos^{-1}\theta = \frac{\pi}{2}$)

Let
$$\theta = \cos^{-1} (1/3)$$
, so $\cos \theta = 1/3$

As

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

Using equation (1), $\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$

Which is right hand side of the expression.

Solve the following equations:

13. 2tan⁻¹ (cos x) = tan⁻¹ (2 cosec x)

Solution:

$$2 \tan^{-1}(\cos x) = \tan^{-1}(2 \cos ec x)$$
$$\tan^{-1}\left(\frac{2 \cos x}{1 - \cos^2 x}\right) = \tan^{-1}\left(\frac{2}{\sin x}\right)$$
$$\frac{2 \cos x}{1 - \cos^2 x} = \frac{2}{\sin x}$$
$$\frac{\cos x}{\sin x} = 1$$
$$\cot x = 1$$
$$x = \pi/4$$

14. Solve
$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x, (x>0)$$

Solution:

Put x = tan θ

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$$

This implies

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$$
$$\tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right) = \frac{1}{2}\tan^{-1}\tan\theta$$
$$\tan^{-1}\left(\frac{\tan\frac{\pi}{4}-\tan\theta}{\tan\frac{\pi}{4}+\tan\theta}\right) = \frac{1}{2}\theta$$
$$\tan^{-1}\tan\left(\frac{\pi}{4}-\theta\right) = \frac{\theta}{2}$$
$$\pi/4 - \theta = \theta/2$$
or $3\theta/2 = \pi/4$

Therefore, x = tan θ = tan $\pi/6$ = $1/\sqrt{3}$

15. $\sin(\tan^{-1}x), |x| < 1$ is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$
(C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Solution:

Option (D) is correct.

Explanation:

Let $\theta = \tan^{-1} x$ so, $x = \tan \theta$

Again, Let's say

$$\sin(\tan^{-1}x) = \sin\theta$$

This implies,

$$\sin(\tan^{-1} x) = \frac{1}{\cos ec\theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}}$$
Put $\cot \theta = \frac{1}{\tan \theta} = \frac{1}{x}$

Which shows,

$$\sin(\tan^{-1}x) = \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = \frac{x}{\sqrt{x^2 + 1}}$$

sin⁻¹(1-x)-2sin⁻¹x =
$$\frac{\pi}{2}$$
 then x is equal to

(A) 0, $\frac{1}{2}$ (B) 1, $\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$

Solution:

Option (C) is correct.

Explanation:

Put $\sin^{-1} x = \theta$ So, $x = \sin \theta$

Now,

$$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$

$$\sin^{-1}(1-x) - 2\theta = \frac{\pi}{2}$$
$$\sin^{-1}(1-x) = \frac{\pi}{2} + 2\theta$$
$$1-x = \sin\left(\frac{\pi}{2} + 2\theta\right)$$
$$1-x = \cos 2\theta$$
$$1-x = 1-2x^2$$

(As $x = \sin \theta$)

After simplifying, we get

x(2x - 1) = 0

x = 0 or 2x - 1 = 0

 $x = 0 \text{ or } x = \frac{1}{2}$

Equation is not true for $x = \frac{1}{2}$. So the answer is x = 0.

17.
$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)$$
 is equal to

(A) $\pi/2$ (B) $\pi/3$ (C) $\pi/4$ (D) $-3 \pi/4$

Solution:

Option (C) is correct.

Explanation:

Given expression can be written as,

$$= \tan^{-1} \left[\frac{\frac{x}{y} - \left(\frac{x-y}{x+y}\right)}{1 + \frac{x}{y} \left(\frac{x-y}{x+y}\right)} \right]$$
$$= \tan^{-1} \left[\frac{x(x+y) - y(x-y)}{y(x+y) + x(x-y)} \right]$$
$$= \tan^{-1} \left(\frac{x^2 + xy - xy + y^2}{xy + y^2 + x^2 - xy} \right)$$
$$= \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + y^2} \right)$$

= п/4