Chapter - 6 APPLICATION OF DERIVATIVES

STUDY NOTES

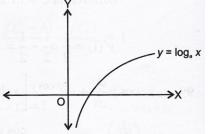
• Rate of change of quantities

- (i) If y = f(x), $\frac{dy}{dx}$ is the rate of change of y with respect to x.
- (ii) If x is a function of time t, $\frac{dx}{dt}$ measures the rate at which x varies with t.

• Increasing and decreasing functions:

Increasing function: A function y = f(x) is increasing, if f(x) increases as x increases.

$$f(x_1) > f(x_2)$$



Decreasing Function: A function y = f(x) is a decreasing function, if f(x) decreases as x increases, i.e., $x_1 > x_2$

$$f(x_1) < f(x_2)$$

Monotonic Function: Monotonic functions are either Increasing or decreasing function, i.e., $f(x) = \log x$

$$f(x) = \log 2x$$
 are monotonic functions.

Condition for monotonic function:

If 'f' is differentiable real function defined on interval (a, b)

- (i) If $f'(x) > 0 \ \forall \ x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 $f \forall x \in (a, b)$, then f(x) is decreasing on (a, b)

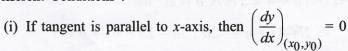
• Tangents and Normal:

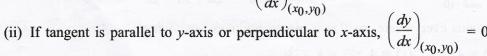
As we know the equation of a straight line passing through a given point (x_0, y_0) having slope is given as $(y - y_0) = m (x - x_0)$

So, the equation of tangent to this line at the (x_0, y_0) is given as

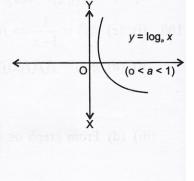
$$(y - y_0) = \frac{dy}{dx} (x - x_0)$$
 and equation of normal, $(y - y_0) = -\left(\frac{dy}{dx}\right)(x - x_0)$

Different Conditions:





(iii) If the tangent is equally inclined to the axes, then $\frac{dy}{dx} = \tan 45^{\circ} = \pm 1$



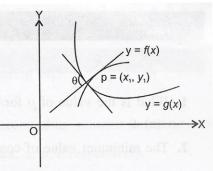
Normal line

Tangent

• Angle of Intersection:

$$m_1 = \left[\frac{df(x)}{dx}\right]_{(x_1, y_1)}$$
 and $m_2 = \left[\frac{dg(x)}{dx}\right]_{(x_1, y_1)}$

$$\therefore \tan \theta = \left[\frac{m_1 - m_2}{1 + m_1 m_2} \right]$$



• Orthogonal Curves :

Two curves are said to be orthogonal curves if they intersect at 90°, and $m_1m_2=-1$. Two curves touch each other if $m_1=m_2$.

• Lengths of Tangent, Normal, Subtangent and Subormal:

(i) Length of tangent =
$$\frac{\left| y\sqrt{1 + \left(\frac{dy}{dx}\right)^2} \right|}{\frac{dy}{dx}}$$

(ii) Length of normal =
$$\left| y \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \right|$$

(iii) Length of subtangent =
$$\left| \frac{y}{dy} \right|$$

(iv) Length of subnormal =
$$\left| y \left(\frac{dy}{dx} \right) \right|$$

• Maxima and Minima:

(i) 'f' be a function defined on an Internal I, have a maximum value in I, if there exists a point c in I such that f(c) > f(x) for all $x \in I$.

The number f(c) is the maximum alue of f in I and point c is called point of maximum value.

- (ii) f is said to have a minimum value in I, if there exists a point c, in I such that f(c) < f(x) for all $x \in I$. The number f(c) in their case is called the minimum value of f in I and the point c in this case is called a point of minimum value of 'f' in I.
- Let 'f' be a real valued function and let c be an interior point in the domain of 'f'. Then,
 - (i) c is called a point of local maxima if there is an h > 0. such that $f(c) \ge f(x)$ for x in (c h, c + h) $x \ne c$ c is called of local maxima value of f.
 - (ii) c is called a point of local minima if there is an h > 0 such that $f(c) \le f(x)$ for all x in (c h, c + h)The value f(x) is called the local minimum value of f.

• Rolle's Theorem

If a function f(x) is

- (i) continuous in the closed interval [a, b]
- (ii) differentiable in an open interval (a, b), i.e., differentiable at each point in the open interval (a, b)
- (iii) f(a) = f(b)
 - \therefore Then, there will be at least one point 'c' in the interval (a, b) such that f'(c) = 0.

• Lagrange's Mean Value Theorem

If a function f(x) is

- (i) continuous in the closed interval [a, b]
- (ii) differentiable in an open interval (a, b). Then there will be at least one point c, where a < c < b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

QUESTION BANK

MULTIPLE CHOICE QUESTIONS

1.	What is the value of p for w	which the function $f(x) = p$	$\sin x + \frac{\sin 3x}{2}$ has an extrem	ne at $x = \frac{\pi}{2}$?	
	(a) 0	(b) 1	(c) - 1 ³	(d) 2	
2.	The minimum value of cos	$\theta + \cos 2\theta$ is:			
			_9	-9	
	(a) -2	(b) 0	(c) $\frac{-9}{8}$	(d) $\frac{-9}{16}$	
3.	If $x + y = 12$, what is the m	naximum value of xy?			
	(a) 25	(b) 49	(c) 36	(d) 64	
4.	How many tangents are para	allel to the axis for the curv	$y = x^2 - 4x + 3 ?$		
	(a) 1	(b) 2	(c) 3	(d) none	
5.	The maximum value of the	function: $\log x - x$ is:			
	(a) -1	(b) 1	(c) 0	(d) ∞	
6.	5. The length of subtangent to the curve $x^2y^2 = m^4$ at the point $(-m_1m)$ is :				
	(a) 3 <i>m</i>	(b) 2m	(c) m	(d) 4m.	
7	The rate of change of $\sqrt{x^2}$	1.16 with respect to r^2 at r	= 3 is :		
/.			1	e Maxima and Minima	
	(a) $\frac{1}{5}$	(b) $\frac{1}{20}$	(c) $\frac{1}{10}$ metal na no bombol	(d) $\frac{1}{25}$	
8.	What is the maximum value	20		$\ f(c)\ _{L^{\infty}(\Omega)} \leq f(c) \text{ for all }$	
	(a) 8	(b) 16	(c) 24	(d) 32	
9.		e curve $x^2 + y^2 - 2x - 3 =$	0 where the tangents are par	rallel to x-axis?	
	9. What is/are the points on the curve $x^2 + y^2 - 2x - 3 = 0$ where the tangents are parallel to x-axis? (a) $(1, 2)$ and $(1, -2)$ (b) $(3, 0)$ and $(-3, 0)$				
	(c) $(2, 1)$ and $(2, -1)$		(d) $(0,\sqrt{3})$ and $(0,-\sqrt{3})$		
10		terior point in the comalling	(d) (0, √3) and (3, 7, 7)		
10.	Identify the correct statement. (a) e^x is a constant function. (b) e^x is increasing function				
(a) e^x is a constant function. (b) e^x is increasing function (c) e^x is decreasing function (d) e^x is neither increasing nor decreasing function					
11.	If the given function $f(x) =$				
	(a) less than 3	(b) greater than 3	(c) less or equal 3	(d) greater or equal 3.	
12.	At an extreme point of a fu	nction $f(x)$, the tangent to t	he curve is:		
	(a) parallel to axis		(b) perpendicular to the x-	-axis	
	(c) inclined to an angle of 45° to x -axis		(d) inclined at an angle 60° to the x-axis.		
13.	The value of 'a' such that f	For which $f(x) = \sin x - ax$	+ b is decreasing in the inter-	rval $(-\infty, \infty)$ is:	
	(a) $a < 1$	(b) $a > 1$	(c) $a \ge 1$	(d) $a \le 1$	
14.	The maximum value of $2x^3$	$-3x^2 - 12x + 5$ for $-2 \le x$	≤ 2 , when,		
	(a) $x = -2$	(b) $x = -1$	(c) $x = 2$	(d) $x = 0$	
15.	The point in the interval (0,	$f(x) = e^x \sin x$	has maximum slope is:		
	(a) π	(b) $\frac{\pi}{2}$	(c) $\frac{3\pi}{2}$	(d) 2π	
		2	2	e en omenagua (m)	

16. A balloon is pumped at the rate of 4 cm³/s. What is the rate at which its surface area increases when its radius

(c) $2 \text{ cm}^2/\text{s}$

(b) $3 \text{ cm}^2/\text{s}$

is 4 cm?

(a) $1 \text{ cm}^2/\text{s}$

3

(d) $4 \text{ cm}^2/\text{s}$

19. The absolute value of maximum $f(x) = \frac{1}{ x-4 +1 }$	$\frac{1}{1+\alpha(1+1)}$ is: $(0-\alpha)^{-1}$ his $\alpha = 2\alpha + 1/\alpha + 1/\alpha = (2)^{-1}$ $(0-\alpha)^{-1}$
17. The desirate value of $ x-4 +1$	x+8 +1
(a) 0 (b) 1	(c) $\frac{14}{13}$ (d) $\frac{13}{14}$
20. Let $f'(\sin x) < 0$ and $f''(\sin x) > 0$, $\forall x \in (0, \pi)$	$g(x) = f(\sin x) + f(\cos x)$, then $g(x)$ is decreasing
in:	
(/	(c) $\left(0, \frac{\pi}{2}\right)$ (d) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
21. Let $f(x)$ be a monotonic polynomial of $2m-1$ degree	ee, where $m \in \mathbb{N}$, then the equation
$f(x) + f(3x) + f(5x) + \dots + f(2m-1) = 2n$	
(a) at least one real root	(b) exactly one real root
(c) $(2m-1)$ real root	(d) none of these
22. Given that $f'(x) > g'(x)$ for all real x, and $f(0) = g(x)$	0), then $f(x) < g(x)$ for all n belonging to :
(a) $(0, \infty)$ (b) $(-\infty, 0)$	(c) $(-\infty, \infty)$ (d) none of these
23. The function $f(x) = ax - b + C x \forall x \in (-\infty, \infty)$ one point if:), where $a > 0$, $b > 0$, $c > 0$, assumes it's minimum only at
(a) $a \neq b$ (b) $a \neq c$	(c) $b \neq c$ (d) $a = b = c$
24. If the equation $x^5 - 10a^3x^2 + b^4x + c^5 = 0$ has three	e equal roots, then
(a) $2b^2 - 10a^3b^2 + c^5 = 0$ (b) $6a^5 + c^5 = 0$	(c) $2c^5 - 10a^3b^2 + b^4c^5 = 0$ (d) $b^4 = 15a$
25. The equation $8x^3 - ax^2 + bx - 1 = 0$ has three real re-	oots in G.P. If, $\lambda_1 \le a \le \lambda_2$ then ordered pair (λ_1, λ_2) can be:
	(c) $(-10, -8)$ (d) none of these
26. If $a, b, > 0$, let $f(a, b) = \frac{a^3b}{(a+b)^4}$, then	
(a) Absolute maximum value of $f(a, b)$ is $\frac{81}{512}$.	(a) (0, 0) 1-≥x(3) - (a, e)
(b) Absolute maximum value of $f(a, b)$ is $\frac{27}{256}$.	
(c) The maximum value when $a = b$ is smaller the	nan the minimum value when $a \neq b$.
(d) Maximum value is same for all 'a' and 'b'.	· acrossom of (d)
a contract of the contract and out street and in	
27. If $f(x) = \int_{0}^{x} \frac{\sin x}{x} dx$, $x > 0$, then	b = x for the left of x = x for the left no (a)
(a) $f(x)$ has local maxima at $x = n\pi \cdot (n = 2k, k \in \mathbb{R})$	(+)
(b) $f(x)$ has local minima at $x = n\pi \cdot (n = 2k, k \in n)$	I^{+})
(c) $f(x)$ has neither maxima nor minima at $x = n\tau$	$\mathfrak{c}.(n\in\Gamma)$

17. Which of the following is correctly define the behaviour of the curve $f(x) = -\sin^3 x + 3\sin^2 x + 5 \ \forall \ x \in$

18. If the sides and angels of a triangle vary in such a way that its circumradius remains constant. Find

 $\frac{db}{\cos b} + \frac{dc}{\cos C}$, where da, db and dc are small increment in the sides, a, b, c respectively.

(c) 0

(a) f(x) is increasing in $\left(0, \frac{\pi}{2}\right)$

(a) 1

(c) f(x) is neither increasing nor decreasing

(b) - 1

(d) f(x) has local maxima at $x = n\pi$ $(n = 2k + 1, k \in I^+)$

(b) f(x) is decreasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(d) f(x) is constant.

			of minimum of function f	$f(x) = 1 + a^2x - x^3$ satisfies the
	inequality $\frac{x^2 + x + 2}{x^2 + 5x + 6} < 0,$	are		
	(a) $(2\sqrt{3}, 3\sqrt{3})$	(b) $(2\sqrt{3}, -3\sqrt{3})$	(c) $\left(-3\sqrt{3}, -2\sqrt{3}\right)$	(d) $\left(-3\sqrt{3}, \ 2\sqrt{3}\right)$
29.) and $g(x)$ are polynomials. For a point, then the point of touching
	(a) always a rational num	ber	(b) may or may not b	e a rational number
	(c) never a rational number		(d) none of these.	10 1 (a) 1 c
30.	$If f(x) = x^3 + ax^2 + bx + c$	and $f(-3) = f(2) = 0$ and	and $f'(-3) < 0$, then the large	gest value of c is:
			(c) - 19	(d) -6
31.	The function $f(x) = (x^2 + x)$	-2) $(x^2 + 2x - 3)$ has 10	ocal maxima at	0 (a)
	(a) $x = 1$	(b) $x = -1$	(c) $x = 0$	(d) $x = \pi$
32.				of 'n' for which 'f' is onto is/ar
	(a) only 1		(c) 3	(d) none of these
33.	The abscissa of the point of			100 CHU10000BBS 20 (J.) \ 12.1
		LA CIT with retrict to		나는 사람들이 살아보는 사람들이 되었다면 하는 것이 되었다면 하는 것이 없는 것이 없는 것이 없는 것이 없다면 없다.
		(b) $\frac{1}{3}$	(C) 2	(d) $\frac{1}{2}$
34.	Let $f:(0, 1) \to \mathbb{R}$ be define	ded by $f(x) = \frac{b-x}{1-bx}$, whe	re b is a constant such tha	$t \ 0 < b < 1$. Then
	(a) f is not invertible on ((0, 1)	(b) $f \neq f^{-1}$ on (0, 1) a	and $f'(b) = \frac{1}{f(0)}$
	(c) $f = f^{-1}$ on $(0, 1)$ and f	$f'(b) = \frac{1}{f'(0)}$	(d) f^{-1} is differentiable	le on (0, 1)
35.) (0)		$e^{x^2} + e^{-x^2}$, $g(x) = e^{x^2} + e^{-x^2}$ and $g(x) = e^{x^2} + e^{-x^2}$
	(a) $a = b$ and $c \neq b$	(b) $a \neq c$ and $c \neq b$	(c) $a \neq c$ and $c \neq b$	(d) $a=b=c$
36.	Let the function $g:(-\infty, \infty)$	$(\infty) \rightarrow \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ be given		Then g is:
	(a) even and is strictly in	creasing in $(0, \infty)$ (b)	o) odd and is strictly decre	asing in $(-\infty, \infty)$
				t is strictly increasing $(-\infty, \infty)$
37.	The total number of local r	naxima and local minim	a of the function:	
	$(2+r)^3 - 3 < r < -$.1		isy munisan atuloedA. (a)
	$f(x) = \begin{cases} (2+x) & 3+x = 1 \\ 2 & 2 \end{cases}$	18 01 45 to avazus		for remines a state of A (d) we shaw a management (s) mass a (d) 3 management (b)
	$x^{\overline{3}}$ $-1 < x < 2$			
	(a) 0	(b) 1	(c) 2	(d) 3 manufactor (h)
38.				oining the points $(c-1, e^{c-1})$ an
		(b) on the right of $x = x$	= c (c) at no point	(d) at all points
39.	If $f(x)$ is a twice, differentiation	able function and given	that $f(1) = 1$, $f(2) = 4$, $f(3) = 4$	(a) = 9, then
	(a) $f''(x) = 2, \forall x \in (1, 1)$	3)	(b) $f''(x) = f'(x) = 5$	for $x \in (2, 3)$
	(c) $f''(x) = 3 \ \forall \ x \in (2, 3)$	3)	(d) $f''(x) = 2 \ \forall \ x \in$	for $x \in (2, 3)$ (1, 3)
				1d) 4 cm /5 1

(a) $f(x) = 0, x \in (0, 1]$ (c) $f(0) = 0, f'(0) = 0$ (f(x) = $x^{\alpha} \log x$ and $f(0) = 0$	= 0, then the value of α , (b) -1 and $0 < b^2 < c$, then (- ∞	$f\left(\frac{1}{n}\right) = 0 \forall n \ge 1 \text{ and } n \in \mathbb{R}$ (b) $f'(0) = 0 = f''(0), x$ (d) $f(0) = 0 \text{ and } f'(0) \text{ refor which Rolle's theorem of } f(0)$	$x \in (0, 1)$ need not to be zero.
$f(x) = x^{\alpha} \log x \text{ and } f(0) = x^{\alpha}$ $f(x) = x^{3} + bx^{2} + cx + d$ $f(x) \text{ is strictly increasing the expression}$	(b) -1 and $0 < b^2 < c$, then $(-\infty)$	(d) $f(0) = 0$ and $f'(0)$ refor which Rolle's theorem of	need not to be zero. can be applied in [0, 1] is:
(a) -2 $f(x) = x^3 + bx^2 + cx + d$ (a) $f(x)$ is strictly increasing	(b) -1 and $0 < b^2 < c$, then $(-\infty)$	for which Rolle's theorem c (c) 0	can be applied in [0, 1] is:
$f(x) = x^3 + bx^2 + cx + d$ (a) $f(x)$ is strictly increasi	and $0 < b^2 < c$, then $(-\infty)$		(d) $\frac{1}{2}$
(a) $f(x)$ is strictly increasi			7
	ng function	∘, ∞)	(t), () (L ' où lengarzis())
(c) $f(x)$ is strictly decrease	ng ranction	(b) $f(x)$ has a local max	cima
	ng function	(d) $f(x)$ is bounded.	
y is a function of x and y	$\log (x+y) - 2xy = 0, \text{ the}$	on the value of $y'(0)$ is equal	al to:
(a) 1	(b) 2	(c) -1	(d) 0
[0, 1] Lagrange's Mean	Value Theorem is not app	licable:	
$\int \frac{-1}{x} - x x < \frac{1}{x}$	$\int \sin x$	HODGER	
(a) $f(x) = \begin{cases} 2 & 2 \\ \left(\frac{1}{2} - x\right)^2 & x \ge \frac{1}{2} \end{cases}$	(b) $f(x) = \begin{cases} \frac{1}{x} \\ 1 \end{cases}$	$x \neq 0$ (c) $f(x) = x x $ $x = 0$	(d) f(x) = x
angent is drawn to ellipse	$\frac{x^2}{27} + y^2 = 1 \text{ at } \left(3\sqrt{3}\cos\theta,\right.$	$\sin \theta$) where $\left(\theta \in 0, \frac{\pi}{2}\right)$. The	en the value of θ such that su
f intercepts on axes made	by this tangent to minimu	ım is :	
(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$
3	•	0	4
π			(d) π
3	2	2	12x>0
	/ - \ •		
(a) $\left(\pm\frac{4}{\sqrt{3}},-2\right)$	(b) $\left(\pm\sqrt{\frac{11}{3}},1\right)$	(c) (0, 0)	(d) $\left(\pm\frac{4}{\sqrt{3}},2\right)$
$f(x) = xe^{x(1-x)}$, then $f(x)$	s:		
(a) increasing on $\left[\frac{-1}{2},1\right]$	(b) decreasing on R	(c) increasing on R	(d) decreasing on $\left[\frac{-1}{2},1\right]$
			(1, 1) and the co-ordinate axe
(-) 1			(d) 1
	TO U. C. (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]		
(a) - 1			(d) 1
	,	-	6
			· ·
	(a) $f(x) = \begin{cases} \frac{-1}{2} - x & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 & x \ge \frac{1}{2} \end{cases}$ angent is drawn to ellipse intercepts on axes made (a) $\frac{\pi}{3}$ the length of the longest in (a) $\frac{\pi}{3}$ the point (s) on the curve $f(x) = xe^{x(1-x)}$, then $f(x) = xe^{x(1-x)}$, then $f(x) = xe^{x(1-x)}$ the triangle formed by the estin the first quadrant. If (a) $f(x) = xe^{x(1-x)}$ the normal to the curve $f(x) = xe^{x(1-x)}$ the normal to the curve $f(x) = xe^{x(1-x)}$.	(a) $f(x) = \begin{cases} \frac{-1}{2} - x & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 & x \ge \frac{1}{2} \end{cases}$ (b) $f(x) = \begin{cases} \frac{\sin x}{x} \\ 1 \end{cases}$ angent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $\left(3\sqrt{3}\cos\theta\right)$, intercepts on axes made by this tangent to minimum (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ he length of the longest interval in which the function (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ he point (s) on the curve $y^3 + 3x^2 = 12y$, where the (a) $\left(\pm\frac{4}{\sqrt{3}}, -2\right)$ (b) $\left(\pm\frac{11}{3}, 1\right)$ (c) $f(x) = xe^{x(1-x)}$, then $f(x)$ is: (a) increasing on $\left[-\frac{1}{2}, 1\right]$ (b) decreasing on R he triangle formed by the tangent to the curve $f(x)$ es in the first quadrant. If its area is 2, then the value (a) -1 (b) -2 the normal to the curve $y = f(x)$ at $(3, 4)$ makes a	In [0, 1] Lagrange's Mean Value Theorem is not applicable: (a) $f(x) =\begin{cases} \frac{-1}{2} - x & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 & x \ge \frac{1}{2} \end{cases}$ (b) $f(x) =\begin{cases} \frac{\sin x}{x}, x \ne 0 \\ 1 & x = 0 \end{cases}$ (c) $f(x) = x x $ angent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $\left(3\sqrt{3}\cos\theta, \sin\theta\right)$ where $\left(\theta \in 0, \frac{\pi}{2}\right)$. The fintercepts on axes made by this tangent to minimum is: (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{8}$ the length of the longest interval in which the function $3\sin x - 4\sin^3 x$ is increasing $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ the point (s) on the curve $y^3 + 3x^2 = 12y$, where the tangent is vertical is (are): (a) $\left(\pm \frac{4}{\sqrt{3}}, -2\right)$ (b) $\left(\pm \sqrt{\frac{11}{3}}, 1\right)$ (c) $(0, 0)$ (d) $f(x) = xe^{x(1-x)}$, then $f(x)$ is: (a) increasing on $\left(-\frac{1}{2}, 1\right)$ (b) decreasing on R (c) increasing on R (d) increasing on R (e) increasing on R (for R) at the point R is the first quadrant. If its area is 2, then the value of R is: (a) R (b) R (c) R (c) R (d) R (d) R (e) R (e) R (for R) at the point R (for R) and R (for R) at the point R (for R) and R (for R) at the point R (for R) and R (for R) at the point R (for R) and R (for R) and R (for R) at the point R (for R) and R (for R) at the point R (for R) and R (for R) at the point R (for R) and R

40. The minimum area of triangle formed by the tangent formed by the tangent to the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and

(a) ab sq. units (b) $\frac{a^2+b^2}{2}$ sq. units (c) $\frac{(a+b)^2}{2}$ sq. units (d) $\frac{a^2+ab+b^2}{3}$ sq. units. 41. If y=y(x) and it follows the relation $x \cos y + y \cos x = \pi$ then y''(0) is equal to:

(b) - 1

coordinates axis is:

(a) 1

53. If the normal to the cur	rve $y = f(x)$ at (3, 4) makes an	n angle $\frac{3\pi}{4}$ with the positive	we x-axis then $f'(3)$ is:		
(a) -1	(b) $\frac{-3}{4}$	(c) $\frac{4}{3}$	(d) 1		
54. Let $f(x) = \begin{cases} x \text{ for } 0 < x \\ 1 \text{ for } x \end{cases}$	$x \leq 2$ = 0 Then at $x = 0$, f has				
(a) a local maxima	(b) a local minima	(c) no local maxima	(d) no extremum.		
55. The function $f(x) = \sin x$	$4x + \cos^4 x$ increases if:		(2. If (1) is a continuous an		
(a) $0 < x < \frac{\pi}{8}$	(b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$	(c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$	(d) $\frac{5\pi}{8} < x < \frac{3\pi}{8}$		
6. If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for ex	very real number x , then the m	ninimum value of f			
(a) does not exists be	cause 'f' is bounded	(b) is not attain even the	arough f is bounded		
(c) is equal to 1		(d) is equal to -1			
77. The number of real val	ues of x , where the function f	$f(x) = \cos x + \cos (\sqrt{2} x)$ at	tains its maximum is:		
(a) 0	(b) 1	(c) 2	(d) infinite		
68. If $f(x) = \frac{x}{\sin x}$ and $g(x)$	$=\frac{x}{\tan x}$, where $0 < x \le 1$, t	hen in this interval.			
(a) both $f(x)$ and $g(x)$	(a) both $f(x)$ and $g(x)$ are increasing		(b) both $f(x)$ and $g(x)$ and decreasing.		
(c) $f(x)$ is an increasi	ng function	(d) $g(x)$ is an increasing	g function.		
9. On the interval [0, 1] t	he function $x^{25} (1-x)^{75}$ takes	its maximum value at the p	point :		
(a) 0	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) $\frac{1}{3}$		
60. The maximum value of	f the function $f(x) = \sin \left(x + \frac{1}{x}\right)$	$\left(\frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$ in the in	interval $\left(0, \frac{\pi}{2}\right)$ occurs at:		
(a) $\frac{\pi}{12}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
$\begin{cases} x+2, -1 \le x < 0 \end{cases}$	enotioni at king A - kenis Card				
$51. \ f(x) = \begin{cases} 1 & x = 0 \\ x & 0 < x < 1 \end{cases}$	then, on [-1, 1], this function	n has :			
$\left(\frac{1}{2}, 0 < x \le 1\right)$		Y + 3x = 12), where the			
(a) a minimum		(b) a maximum			
(c) either maxima or minima		(d) neither maxima nor minima.			
52. Let $f(x)$ be a quadratic	function which is positive, fo	r all real x.			
	f''(x), then for any real x.				
(a) $g(x) < 0$	(b) $g(x) > 0$	(c) g(x) = 0	(d) $g(x) \ge 0$		
	ng and decreasing functions, r	and the constraint of the later to the			
then $h(x) = h(1)$ is:	, ki (10 si	dev off and A si ana si			
(a) always zero	(b) always negative	(c) always positive	(d) none of these.		
	rmal to the curve $x^2 = 4y$ whi				
(a) $x + y = 3$			(d) $x - y = -1$		

65.	The co-ordinate of the point slope is:	t on the curve $y = \frac{x^2 - 1}{x^2 + 1}$,	x > 0 such that tangent at	these point have the greatest
	(a) $\left(\frac{1}{\sqrt{3}}, \frac{-1}{2}\right)$	(b) $\left(\sqrt{3},\sqrt{2}\right)$	(c) $\left(\sqrt{3},\frac{1}{2}\right)$	(d) $\left(-\frac{1}{\sqrt{3}}, \frac{-1}{2}\right)$
66.	A window of a fixed perimeter is in the form of rectangle surmounted by a semi-circle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square metre as the coloured glass does. What is the ratio of the sides of the rectangular so that the window transmits the maximum light?			
	(a) π	(b) 6π	(c) $\frac{6}{\pi}$	(d) $\frac{6}{6 + \pi}$
67.	The equation of the normal	to the curve $y = (1 + x)^y +$	$\sin^{-1}(\sin^2 x)$ at $x = 0$ is :	
			(c) $x - y = 2$	(d) $x + y = -2$
68.			t line passing through this po mum area of the triangle OF	oint cuts the positive direction PQ, O being origin is:
	(a) 2k	(b) 2hk	(c) 2h	(d) <i>hk</i>
69.	A point on the curve $x^2 + 2y$	$y^2 = 6$ whose distance from	the $x + y = 7$ is minimum	is:
	(a) (2, 1)	(b) (1, 2)	(c) (-1, 2)	(d) $(-2, -1)$
70.	If the line $ax + by + c = 0$	is a normal to the curve xy	y=1, then	
	(a) $a > 0, b > 0$	(b) $a > 0, b < 0$	(c) $a < 0, b < 0$	(d) none of these
71.	If $f(x) = \begin{cases} 3x^2 + 12x - 1, -15 \\ 37 - x, 2 < 0 \end{cases}$	$\leq x \leq 2$ then which of the form	following correct ?	
	(a) $f(x)$ is increasing on [-	-1, 2]	(b) $f(x)$ is continuous on	[-1, 3]
	(c) $f(x)$ has the maximum	value at $x = 2$	(d) all of the above	
72,	The function $f(x) = 2 x +$	x + 2 - x + 2 - 2 x has	as a local minimum or a loc	al maximum at $x =$
	(2) $\frac{-2}{-2}$	(b) $\frac{-2}{3}$	(c) 2	(d) $\frac{2}{3}$
73	Let $h(x) = fx'(f(x)^2 + f(x))^3$			3
13.	(a) h is increasing whenev		(b) h is increasing whenever	ver f is decreasing
				vor y no accreasing
de d				
74.	Let $f(\mathbf{x}) = \int e^{x} (x-1)(x-2)$			
	(a) $(-\infty, 0)$		(c) $(-2, -1)$	(d) $(-2, \infty)$
75.	The normal to the curve x^2	$+ 3xy -xy - 3y^2 = 0$ at (1,	1) magned neutral to some to	
	(a) meets the curve again	in the second quadrant.	(b) meets the curve again	in the third quadrant.
	(c) meets the curve again	in the fourth quadrant.	(d) does not meet the curr	ve again.
76.	If $x = -1$ and $x = 2$ are extra	reme points of $f(x) = \alpha \log \alpha$	$ x + \beta x^2 + x$, then	
	(a) $\alpha = -6, \beta = \frac{1}{2}$	(b) $\alpha = 2, \ \beta = \frac{-1}{2}$	(c) $\alpha = -6$, $\beta = \frac{-1}{2}$	(d) $\alpha = 2$, $\beta = \frac{1}{2}$
77.	If f and g are differentiable $c \in]0, 1[$	function in [0, 1] satisfyin	ag f(0) = 2 = g(1), g(0) = 0	and $f(1) = 6$, then for some

(c) f'(c) = g'(c)

(b) 2f'(c) = 3g'(c)

(a) 2f'(c) = g'(c)

(d) f'(c) = 2g'(c)

- 78. A value of c for which the conclusion of Mean Value Theorem holds for the function $f(x) = \log_e x$ on the interval [1, 3] is: (b) $\frac{1}{2} \log_e 3$ (c) $\log_3 e$ (d) log_3 (a) $2 \log_3 e$
- 79. The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to the x-axis is:
- (b) y = 2
- (c) y = 3
- 80. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \begin{cases} k 2x & \text{if } x \le -1 \\ 2x + 3 & \text{if } x > -1 \end{cases}$

If f has a local minimum at x = -1, then a possible value of 'k' is:

(a) 0

- (b) $\frac{-1}{2}$ (c) -1 (d) 1

- 81. The function $f(x) = \tan^{-1} (\sin x + \cos x)$ is an increasing function in :

 - (a) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (b) $\left(\frac{-\pi}{2}, \frac{\pi}{4}\right)$ (c) $\left(0, \frac{\pi}{2}\right)$ (d) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
- 82. The normal to the curve $x = a (1 + \cos \theta), y = a \sin \theta$ at '\theta' is always passes through the fixed point:

- (b) (0, 0)
- (c) (0, a)
- (d) (a, a)
- 83. If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$ where a > 0, attains its maximum and minimum at 'p' and 'q' respectively such that $p^2 = q$ than 'a' is equal to:
 - (a) 3

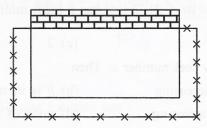
(b) 1

(c) 2

(d) $\frac{1}{2}$

INPUT TEXT BASED MCQ's

84. Rammu farmer wants to fence his rectangular garden using bricks and wire. But he has less budget so he decided to build brick wall at the end and wire fence at the remaining three sides, he has 100 feet of wire fencing as shown in the figure,



Answer the following questions:

- (i) If Ramu wants to construct a garden using 100 ft of fencing we need to maximise its:
 - (a) Volume
- (b) area

- (c) perimeter
- (d) length of the side
- (ii) If 'b' denote the length of side of garden perpendicular to brick wall and 'l' denotes the length of the side parallel to brick wall, then which of the following relation represents the total amount of fencing wire:
 - (a) 2l + b = 150
- (b) 2l + b = 100
- (c) 2b + l = 100
- (d) b + l = 200
- (iii) Area of the garden as a function of b, say A(b) can be represented by :
 - (a) $100 + 2b^2$
- (b) $b 2b^2$
- (c) $100b 2b^2$
- (d) $200 b^2$

- (iv) Maximum value A(x) occurs at x-equals :
 - (a) 50 ft

(b) 30 ft

(c) 25 ft

(d) 100 ft

- (v) The maximum area of the garden is:
 - (a) 3750 sq. ft
- (b) 2500 sq. ft
- (c) 4000 sq. ft
- (d) 1000 sq ft

ANSWERS 10. (b) 7. (c) 8. (b) 9. (a) 1. (d) 2. (c) 3. (c) 4. (a) 5. (a) 6. (c) 11. (b) 12. (a) 13. (b) 14. (b) 15. (b) **16.** (c) **17.** (a) **18.** (c) 19. (c) **20.** (b) 30. (c) 21. (b) **22.** (b) **23.** (b) 24. (b) 25. (c) **26.** (b) 27. (b) **28.** (a) 29. (a) **40.** (a) **31.** (a) **32.** (c) **33.** (a) **34.** (a) 35. (d) 36. (c) 37. (c) 38. (a) 39. (d) **50.** (a) **41.** (c) 42. (c) **43.** (d) **44.** (a) **45.** (a) **46.** (a) 47. (b) 48. (a) 49. (d) **52.** (d) **54.** (a) 55. (b) **56.** (c) 57. (b) **58.** (c) **59.** (b) **60.** (a) **51.** (c) **53.** (d) 69. (a) **70.** (b) **61.** (d) **62.** (b) **63.** (d) **64.** (a) **65.** (a) **66.** (d) **67.** (a) **68.** (b) 79. (c) 80. (c) **71.** (d) 72. (b) 73. (a) 74. (c) 75. (c) **76.** (a) 77. (d) 78. (a) **81.** (b) 82. (a) 83. (c) **84.** (i) (b) (ii) (c) (iii) (d) (iv) (c) (v) (a)

Hints to Some Selected Questions

1. (d)
$$f'(x) = \pi \cos x + \frac{3\cos 3x}{3} = \pi \cos x + \cos 3x$$

 $f(x)$ has an extreme value at $x = \frac{\pi}{3} \Rightarrow f'\left(\frac{\pi}{3}\right) = 0$
 $\Rightarrow p \cos \frac{\pi}{3} - \cos \pi = 0 \Rightarrow p\left(\frac{1}{2}\right) - 1 = 0 \Rightarrow p = 2$

4. (a)
$$\frac{dy}{dx} = 2x - 4$$
, at $x = 2$, $\frac{dy}{dx} = 0$

 \therefore Only one tangent is possible, as slope of tangent parallel to x-axis is zero.

5. (a)
$$\frac{dy}{dx} = \frac{1}{x} - 1 \Rightarrow \frac{1}{x} - 1 = 0 \Rightarrow x = 1$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-1}{x^2} \Rightarrow \text{for } x = 1, \frac{d^2y}{dx^2} = -\text{ve}$$

 \therefore The value is maximum for $x = 1 \Rightarrow \log(1) - 1 = -1$.

8. (b)
$$x + y = 8 \Rightarrow y = 8 - x$$

$$\Rightarrow c = xy \Rightarrow c = x (8 - x) \Rightarrow \frac{dc}{dx} = 8 - 2x \Rightarrow \frac{d^2c}{dx^2} = -2$$
Put $\frac{dc}{dx} = 0$, for maxima and minima $8 - 2x = 0 \Rightarrow x = 4$

$$\therefore \left(\frac{d^2C}{dx^2}\right)_{x=4} = -2 < 0 \quad \therefore \text{ Max. Value is at } x = 4, \text{ i.e., } 16.$$

9. (a)
$$2x + 2y \frac{dy}{dx} - 2 = 0 \Rightarrow \frac{dy}{dx} = \frac{1-x}{y}$$

As per given condition, tangent is parallel to x-axis.

$$\therefore \frac{dy}{dx} = 0 \Rightarrow \frac{1-x}{y} = 0 \Rightarrow x = 1 \Rightarrow (1) + y^2 - 2 - 3 = 0 \Rightarrow y = \pm 2.$$

10. (b)
$$y = f(x) = e^x \implies \frac{dy}{dx} = e^x > 0 \quad x \in \mathbb{R}$$

 $f(x) = e^x$ is increasing function.

11. (b)
$$f(x) = kx^3 - 9x^2 + 9x + 3 \Rightarrow f'(x) = 3kx^2 - 18x + 9 > 0 \Rightarrow \Delta = b^2 - 4ac < 0 \Rightarrow 36 - 12 k < 0 \Rightarrow k > 3$$
.

12. (a)
$$\frac{dy}{dx} = 0$$
, For the extreme points. Therefore, tangent to the curve is parallel to x-axis.

13. (b)
$$f'(x) = \cos x - a$$

$$\therefore$$
 function to be decreasing $f'(x) < 0$

$$\cos x - a < 0 \Rightarrow \cos x < a$$

Value of
$$\cos x$$
 lies between -1 and 1

$$-1 < a \Rightarrow a > 1$$

$$\Rightarrow V = \frac{4}{3} \pi r^3 \Rightarrow \frac{dV}{dt} = \frac{4}{3} \pi . 3r^2 \frac{dr}{dt} \Rightarrow 4 = 4 \pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{16\pi}$$

Surface area(s) =
$$4 \pi r^2 \Rightarrow \frac{ds}{dt} = 4\pi \cdot 2r \cdot \frac{dr}{dt} = 4\pi \times 2 \times 4 \times \frac{1}{16\pi} = 2 \text{cm}^2/\text{sec}$$
.

21. (b)
$$f(x)$$
 is monotonic $\Rightarrow f'(x) < 0$ or $f'(x) > 0$

$$f'(px) < 0$$
 or $f'(px) > 0$. $\forall x \in \mathbb{R} \Rightarrow f(px)$ is also monotonic.

$$f(x) + f(3x) + \dots + f(2m-1)x$$
 is a monotonic polynomial of odd degree $(2m-1)$. It can have all real values at only once.

22. (b) Let
$$h(x) = f(x) - g(x)$$

$$h'(x) = f'(x) - g'(x) > 0 \ \forall \ x \in \mathbb{R}$$
 : $h(x)$ is increasing function.

$$f(0) - g(0) = 0.$$

Therefore,
$$h(x) > 0 \ \forall \ x \in (0, \infty)$$
 and $h(x) < 0 \ \forall \ x \in (-\infty, 0)$

26. (b) AM
$$\geq$$
 GM, for $(a, a, a, 3b)$ we get, $\Rightarrow \frac{a+a+a+3b}{4} \geq (3a^3b)^{1/4}$

$$\Rightarrow \frac{3}{4}(a+b) \ge (3a^3b)^{1/4} \Rightarrow \frac{3^4}{256} (a+b)^4 \ge 3a^3b \Rightarrow \frac{a^3b}{(a+b)^4} \le \frac{27}{256}.$$

27. (b)
$$f'(x) = \frac{\sin x}{x}$$
, for $f'(x) = 0$ $\frac{\sin x}{x} = 0 \Rightarrow x = n\pi$

$$f''(x) = 0; \frac{x \cos x - \sin x}{x^2} = f''(n\pi) = \frac{\cos n\pi}{n\pi} < 0$$

If
$$n = 2k - 1$$
 If $n = 2k$ $n \in I^+$

29. (a) If
$$f(x)$$
 touches x-axis at only one irrational point, then $f(x) = (x - a)^2 g(x)$, where α is irrational

$$\Rightarrow$$
 Coefficient of $f'(x)$ can't be rational

$$\Rightarrow$$
 for $f(x)$ with rational coefficient, then point of touching is rational.

32. (c)
$$x^2 - \frac{x}{2} + \frac{49}{16}$$
 has minimum value 3 at $x = \frac{1}{4}$

$$\cos 4\pi x$$
 has minimum value -1 at $x = \frac{1}{4}$

$$\Rightarrow x^2 - \frac{x}{2} + \frac{49}{16} + \cos 4\pi x \ge 2$$

35. (d)
$$f(x) = e^{x^2} + e^{-x^2} \Rightarrow f'(x) f(x) = 2x \left(e^{x^2} - e^{-x^2} \right) \ge 0 \ x \in [0, 1]$$

Clearly for
$$0 \le x \le 1$$
; $f(x) \ge g(x) \ge h(x)$

$$f(1) = g(1) = h(1) = e + \frac{1}{e}$$

and f(1) is the greatest

$$a = b = c = e + \frac{1}{e} \Rightarrow a = b = c.$$

37. (c)
$$f(x) = (2+x)^3$$
, $-3 = x^{2/3} \Rightarrow f'(x) = 3(2+x)^2$, $-3 = \frac{2}{\frac{-1}{3}}$, -1

Clearly x = -2 is extremum and x = -1, f(x) is not differentiable.

:. There are two (2) maximum or minimum points

41. (c)
$$-x \sin y \frac{dy}{dx} + \cos y - y \sin x + \cos x \frac{dy}{dx} = 0$$

$$\Rightarrow y - (0) = 1.$$

Again differentiating and using y(0) = 1, $y(0) = \pi$, we get $y(0) = \pi$

43. (d) Function must be continuous in the [0, 1]

$$\therefore \lim_{x \to 0^+} f(x) = 0 \Rightarrow \lim_{x \to 0^+} \frac{\log x}{x^{-\alpha}}$$

Apply L' Hospital Rule

$$\lim_{x \to 0^+} \frac{\frac{1}{x}}{-\alpha x^{\alpha - 1}} \Rightarrow \lim_{x \to 0^+} \frac{x^{\alpha}}{-\alpha}$$

For the limit to exist $\alpha > 0$ for $\alpha > 0$ $\lim_{x \to 0^+} f(x) = 0$

44. (a)
$$f'(x) = 3x^2 + 2bx + c$$
, $b^2 < c$ $D = 4b^2 - 12c = 4(b^2 - 3c) \Rightarrow 4(b^2 - 3c) < 0$ $\Rightarrow b^2 - 3c < 0 \Rightarrow f'(x) > 0$.

45. (a)
$$\log (x + y) = 2xy$$

When $x = 0$, $\log y = 0$, $y = 1$

differentiate both side;
$$\frac{dy}{dx} = \left[\frac{2y(x+y)-1}{1-2x(x+y)}\right]$$
 at $(0, 1) \Rightarrow \frac{dy}{dx} = 1$

46. (a) L.H.D. =
$$\lim_{h \to 0} \frac{f(a-h) - f(a)}{h} = \lim_{h \to 0} \frac{\left(\frac{1}{2} - \frac{1}{2} + h\right) - \left(\frac{1}{2} - \frac{1}{2}\right)}{h} = 1$$

R.H.D. =
$$\lim_{h \to 0} f \frac{(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\left(\frac{1}{2} - \frac{1}{2} - h\right) - \left(\frac{1}{2} - \frac{1}{2}\right)^2}{h} = 1$$

:. LHD = RHD. Hence
$$f(x)$$
 is not differentiable at $x = \frac{1}{2}$

:. It does not follow Lagrange's theorem.

48. (a) Since $3 \sin x - 4 \sin^3 x = \sin 3x$ and $\sin 3x$ is increases when 3x can take values from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$ or x takes value from $\frac{-\pi}{6}$ to $\frac{\pi}{6}$.

$$\therefore$$
 The length of longest interval in which $f(x)$ increase is $\frac{\pi}{6} - \left(-\frac{\pi}{6}\right) = \frac{\pi}{3}$

52. (d)
$$\frac{dy}{dx} = f'(x)$$
 slope of normal $= \frac{-1}{f'(x)}, \frac{-1}{f'(3)}, \tan \frac{3\pi}{4} = -1 : f'(3) = 1.$

53. (d)
$$\frac{dy}{dx} = f'(x)$$
, slope of normal $= \frac{-1}{f'(x)}, \frac{-1}{f'(3)} = \tan \frac{3\pi}{4} = -1 \implies f'(3) = 1$.

56. (c)
$$f'(x) = \frac{(x^2+1)2x - (x-1)(2x)}{(x^2+1)^2} = 0 = \frac{4x}{(x^2+1)^2} = 0, \rightarrow x = 0$$

If x < 0, f'(x) < 0 and if x > 0, f'(x) > 0

 \therefore x is point of minima, \therefore Minimum value of f(x) = 1.

57. (b)
$$f(x) = \cos x + \cos \left(\sqrt{2}x\right)$$
 is 2, attain its maximum at $x = 0$.

There exists no other value of x for which the same value can be attained.

58. (c)
$$f(x) = \frac{x}{\sin x} \implies f'(x) = \frac{\sin x - x \cos x}{\sin^2 x} = 0$$

$$\sin x - x \cos x = 0 \implies x = \frac{\sin x}{\cos x} = \tan x$$

In the interval (0, 1), there is no solution for $x = \tan x$

$$g(x) = \frac{x}{\tan x}$$
 \Rightarrow $g'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x} = 0 \Rightarrow x = \frac{1}{\sin x \cos x}$

In the interval (0, 1), g(x) is not increasing function.

59. (b) Hence
$$f(x)$$
 attains maximum at $x = \frac{1}{4}$.

$$f(x) = x^{25} (1 - x)^{75}$$

$$f'(x) = 25x^{24} (1-x)^{75} + 75 (1-x)^{74} = 25x^{24} (1-x)^{74} \{(1-x) - 3x\} = 25x^{24} (1-x)^{74} (1-4x)^{74} = 25x^{24} (1-x)^{74} = 25x^{24} = 25x^$$

$$f(x)$$
 is positive for $x < \frac{1}{4}$ and $f(x)$ is negative for $x > \frac{1}{4}$

Hence, f(x) attains maximum at $x = \frac{1}{4}$

61. (d) Max. value of
$$(x) = 2 - h$$
 at left neighbourhood of $x = 0$

$$x < 0 \text{ for } -1 \le x < 0$$

Minimum value of f(x) = (0 + h) at right hand of $x = 0 \Rightarrow x > 0$ for $0 < x \le 1$.

65. (a)
$$y = \frac{x^2 - 1}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$$
. Slope (B) $= \frac{dy}{dx} = \frac{4x}{(x^2 + 1)^2}$

For maxima and minima s.
$$\frac{ds}{dx} = 0 \Rightarrow \frac{ds}{dx} = \frac{4(x^2+1)^2 \cdot 1 - x \cdot 2(x^2+1)2x}{(x^2+1)^4} = 0$$
; $x = \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$

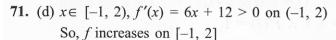
Slope has maxima at $x = \frac{1}{\sqrt{3}} \Rightarrow y = \frac{-1}{2}$

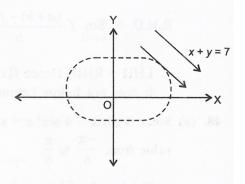
69. (a) Let us take a point
$$(\sqrt{6}\cos\theta, \sqrt{3}\sin\theta)$$

On the
$$\frac{x^2}{6} + \frac{y^2}{3} = 1$$
.

Slope of normal at
$$P = \frac{a_2/x_1}{b_2/y_1} = \frac{\sqrt{6}\sec\theta}{\sqrt{3}\csc\theta} = \sqrt{2}\tan\theta = 1$$
.

so,
$$\cos \theta = \sqrt{\frac{2}{3}}$$
 and $\sin \theta = \frac{1}{\sqrt{3}}$. Hence required point is P (2, 1).





A point
$$x = 2$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (37 - x) = 35 \Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (3x^{2} + 2x - 1) = 35.$$

(f) is continuous at x = 2 as well.

As 'f' increases on [-1, 1] and decreases on [2, 3]

so, f has a maximum at x = 2.

74. (c)
$$f'(x) = e^x (x - 1) (x - 2) dx$$

:.
$$f'(x) > 0$$
 or $e^x > 0$ $(x - 1) > 0$ and $(x - 2) > 0$

$$x > 2$$
 and $x < 1$

75. (c)
$$x^2 + 3xy - xy - 3y^2 = 0 \Rightarrow x(x + 3y) - y(x + 3y) = 0 \Rightarrow (x + 3y)(x - y) = 0$$

$$\therefore$$
 Equation of normal is $(y-1)=-1$ $(x-1) \Rightarrow x+y=2$

It intersects x + 3y = 0 at (3, -1)

:. Curve meet again in the IV quadrant.

76. (a)
$$f'(x) = \frac{\alpha}{x} + 2\beta x + 1$$

$$2\beta x^2 + x + \alpha = 0$$
 has roots -1 and 2.

77. (d) Let
$$h(f) = f(x) - 2g(x) \Rightarrow h(0) = h(1) = 2$$

Hence, using Rolle's theorem

$$f'(c) = 0 \Rightarrow f'(c) = 2g'(c)$$

78. (a)
$$f'(c) = \frac{f(3) - f(1)}{3 - 1} \Rightarrow \frac{1}{C} = \frac{\log 3 - \log 1}{2} \Rightarrow C = \frac{2}{\log_c 3} = 2 \log_3 e$$
.

81. (b)
$$f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot (\cos x - \sin x) = \frac{\sqrt{2}\cos\left(x + \frac{x}{4}\right)}{1 + (\sin x + \cos x)^2}$$

$$f(x)$$
 is increasing if $\frac{-\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{2}$; $\frac{-3\pi}{4} < x < \frac{\pi}{4}$

$$\therefore f(x) \text{ is increasing } \left(\frac{-\pi}{2}, \frac{\pi}{4}\right)$$

82. (a) Eliminating
$$\theta$$
, we get, $(x-a)^2 + y^2 = a^2$

Hence normal always passes through (a, 0).

(ii) (c)
$$2b + l = 100$$

(iii) (d) Area of garden as a function of
$$x$$
 can be represented as

$$A(b) = b \cdot l = b(100 - 2b) = 100b - 2b^2$$

(iv) (c)
$$A(b) = 100b - 2b^2$$

$$A'(b) 100 - 4b$$

For the area to be maximise
$$A'(b) = 0$$

$$100 - 4b = 0 \Rightarrow 4b = 100 ; \Rightarrow b = 25 \text{ ft}$$

$$= 200(25) - 2(25)^2 = 5000 - 1250 = 3750$$
 sq. ft.