Chapter - 8 APPLICATION OF INTEGRALS

STUDY NOTES

• Symmetry about x-axis: A graph is symmetric about x-axis if its equation is unchanged when y is replaced by -y. For example, the graph of the equation $x = y^2$ is symmetrical about x-axis.

• Symmetry about y-axis: A graph is symmetric about y-axis if its equation is unchanged when x is replaced by -x. For example, the graph of the equation $y = x^2$ is symmetrical about y-axis.

• Symmetry about origin: A graph is symmetric about origin if its equation remains unchanged when x and y are replaced by -x and -y respectively.

• Symmetry about line y = x: If on interchanging x and y, the equation remains same, the graph will be symmetrical about line y = x. For eg., the graph of equation $\sqrt{x} + \sqrt{y} = 1$ is symmetrical about y = x.

• Area between a curve y = f(x), the x-axis and the ordinates x = a and x = b. In the given figure, BA is a vertical line segment running across the area. The height BA is (the value of y at B – the value of y at A), i.e., $(y_B - y_A)$.

$$\therefore \text{ Area} = \int_{a}^{b} (y_{\text{B}} - y_{\text{A}}) dx = \int_{a}^{b} (y_{\text{upper curve}} - y_{\text{lower curve}}) dx$$

Area between curves $y = f_1(x)$ and $y = f_2(x)$ and ordinates x = a, x = b

Area =
$$\int_{a}^{b} (y_{B} - y_{A}) dx = \int_{a}^{b} [f_{1}(x) - f_{2}(x)] dx$$

• Area bounded by the curves $y = f_1(x)$ and $y = f_2(x)$. The two curves intersect at x = c and x = d

Area =
$$\int_{c}^{d} (y_{B} - y_{A}) dy = \int_{c}^{d} [f_{1}(x) - f_{2}(x)] dx$$
.

• Area bounded by curves $x = f_1(y)$ and $x = f_2(y)$

Area =
$$\int_{a}^{b} (x_{B} - x_{A}) dy = \int_{a}^{b} [f_{2}(y) - f_{1}(y)] dy$$
.

QUESTION BANK

MULTIPLE CHOICE QUESTIONS

- 1. Area bounded by the curve $y = \log x$, x-axis and the ordinates x = 1, x = 2 is :
 - (a) log 4 sq. units

(b) $(\log 4 + 1)$ sq. units

(c) $(\log 4 - 1)$ sq. units

- (d) $log 4^2$ sq. units
- **2.** Area bounded by parabola $y^2 = x$ and straight line 2y = x is :
 - (a) $\frac{4}{2}$ sq. units
- (b) 1 sq. units
- (c) $\frac{2}{3}$ sq. units (d) $\frac{3}{4}$ sq. units
- 3. If area bounded by the curves $y^2 = 4ax$ and y = mx is $\frac{a^2}{3}$, then the value of m is:
 - (a) 2

(b) -2

(c) 3

- **4.** Area bounded by the curve xy 3x 2y 10 = 0, x-axis and the lines x = 3, x = 4 is (in sq. units)
 - (a) $16 \log 2 13$
- (b) $16 \log 2 3$ (c) $16 \log 2 + 3$
- (d) $16 \log 2 + 13$

- 5. The area of the region bounded by y = |x 1| and y = 1 is :

- (d) -1
- **6.** Area bounded by lines y = 2 + x, y = 2 x and x = 2 is (in sq. units)
 - (a) 3

(b) 4

(c) 8

(d) 16

- 7. The area bounded by the straight lines x = 0, x = 2 and the curves $y = 2^x$, $y = 2x x^2$ is (in sq. units)
 - (a) $\frac{4}{3} \frac{1}{\log 2}$
- (b) $\frac{3}{\log 2} + \frac{4}{3}$ (c) $\frac{4}{\log 2} 1$
- (d) $\frac{3}{\log 2} \frac{4}{3}$
- 8. The area enclosed between the curves $y^2 = x$ and y = |x| is (in sq. units)
 - (a) $\frac{2}{3}$

- **9.** The area between the parabola $y = x^2$ and the line y = x is
 - (a) $\frac{1}{6}$ sq. units
- (b) $\frac{1}{3}$ sq. units (c) $\frac{1}{2}$ sq. units
- (d) $\frac{1}{4}$ sq. units

- 10. Area bounded by the parabola $y^2 = 4ax$ and its latus rectum is :

- (d) $\frac{3}{8} a^2$ sq. units
- (a) $\frac{2}{3}a^2$ sq. units (b) $\frac{4}{3}a^2$ sq. units (c) $\frac{8}{3}a^2$ sq. units 11. Area included between the two curves $y^2 = 4ax$ and $x^2 = 4ay$, is:
 - (a) $\frac{32}{2} a^2$ sq. units
- (b) $\frac{16}{3}$ sq. units (c) $\frac{32}{3}$ sq. units
- (d) $\frac{16}{2}$ a^2 sq. units
- 12. The part of circle $x^2 + y^2 = 9$ in between y = 0 and y = 2 is revolved about y-axis. The volume of generating solid will be (in cubic units)
 - (a) $\frac{46}{2}\pi$

(b) 12π

- (d) 28_π
- 13. The area bounded by $y = x^2$, the x-axis and the lines x = -1 and x = 1 is :

- (a) $\frac{2}{3}$ sq. units (b) $\frac{1}{3}$ sq. units (c) $\frac{3}{4}$ sq. units (d) $\frac{2}{5}$ sq. units
- 14. The area of the region bounded by the parabola $y^2 = 8x$ and the line x = 2 is :
 - (a) $\frac{8}{3}$ sq. units
- (b) $\frac{16}{3}$ sq. units
- (c) $\frac{32}{2}$ sq. units
- (d) $\frac{32}{5}$ sq. units
- 15. The area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is:
- (b) $\frac{9}{4}$ sq. units
- (c) $\frac{2}{3}$ sq. units
- (d) $\frac{5}{3}$ sq. units
- 16. The area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis is:
 - (a) $\frac{14}{2}$ sq. units
- (b) $\frac{15}{7}$ sq. units (c) $\frac{8}{3}$ sq. units (d) $\frac{7}{3}$ sq. units
- 17. The area of the region bounded by the parabola $x^2 = 4y$ and the lines y = 2, y = 4 and y-axis in the first quadrant
 - (a) $\frac{7}{2}(8-2\sqrt{2})$ sq. units (b) $\frac{16}{3}$ sq. units

 - (c) $\frac{32\sqrt{2}}{2}$ sq. units (d) $\frac{4}{3}(8-2\sqrt{2})$ sq. units

- 18. The area bounded by the curve $y = x^2 + 1$ and the straight line x + y = 3 is:
- (a) $\frac{9}{2}$ sq. units (b) 4 sq. units (c) $\frac{7\sqrt{17}}{6}$ sq. units
- (d) $\frac{17\sqrt{17}}{6}$ sq. units
- 19. The area bounded by the curve $x^2 = 4y + 4$ and line 3x + 4y = 0 is:
 - (a) $\frac{25}{4}$ sq. units
 - (b) $\frac{125}{8}$ sq. units (c) $\frac{125}{16}$ sq. units
- (d) $\frac{124}{24}$ sq. units

20.	The area of the region bour	nded by line $y = 2x$, x-axis	and ordinate $x = 2$ is :				
	(a) 4 sq. units	(b) 5 sq. units	(c) 6 sq. units	(d) 3 sq. units			
21.	. The area enclosed between the graph of $y = x^3$ and the lines $x = 0$, $y = 1$, $y = 8$ is:						
	(a) 7 sq. units	(b) 14 sq. units	(c) $\frac{45}{4}$ sq. units	(d) $\frac{65}{4}$ sq. units			
22.	The area of the region bour	nded by the curve $v = \sqrt{16}$	$-x^2$ and r-axis is:				

23. The area of the region bounded by the line
$$y = x$$
, the x-axis and the ordinates $x = -1$, $x = 2$ is:

(a) $\frac{5}{2}$ sq. units

(b) $\frac{3}{2}$ sq. units

(c) $\frac{7}{2}$ sq. units

(d) $\frac{7}{3}$ sq. units

24. The area enclosed by the curve
$$y^2 = 4x$$
 and the line $x = 3$ is:

(a) $3\sqrt{2}$ sq. units
(b) $8\sqrt{3}$ sq. units
(c) $2\sqrt{3}$ sq. units
(d) $4\sqrt{3}$ sq. units

25. The area bounded by the curves
$$y^2 = 4x$$
, and $y = x$ is:

(a) $\frac{8}{3}$ sq. units

(b) $\frac{14}{3}$ sq. units

(c) $\frac{7}{3}$ sq. units

(d) $\frac{16}{3}$ sq. units

- 29. The area of the region bounded by the line y = 4 and the curve $y = x^2$ is:

 (a) $\frac{32}{3}$ sq. units

 (b) $\frac{1}{3}$ sq. units

 (c) 32 sq. units

 (d) $\frac{26}{3}$ sq. units
- 30. The volume of solid generated by revolution parabola $y^2 = 4ax$, cut of by latus rectum, about tangent at vertex is (in sq. units):

(a)
$$\frac{4\pi}{5} a^3$$
 (b) $4\pi a^3$ (c) $\frac{4\pi}{5} a^2$ (d) $\frac{4\pi}{5}$

31. The area of the region bounded by the y-axis, $y = \cos x$ and $y = \sin x$, where $0 \le x \le \frac{\pi}{2}$ is:

(a) $\sqrt{2}$ sq. units
(b) $(\sqrt{2}+1)$ sq. units
(c) $(\sqrt{2}-1)$ sq. units
(d) $(2\sqrt{2}-1)$ sq.

(a)
$$\sqrt{2}$$
 sq. units (b) $(\sqrt{2}+1)$ sq. units (c) $(\sqrt{2}-1)$ sq. units (d) $(2\sqrt{2}-1)$ sq. units
32. Area of the region in the first quadrant enclosed by the x-axis the line $y=x$ and the circle $x^2+y^2=32$ is:

- (a) 16π sq. units (b) 4π sq. units (c) 32π sq. units (d) 24π sq. units
- 33. The area of the region bounded by the curve $y = \sin x$, between the ordinates x = 0 and $x = \frac{\pi}{2}$ and the x-axis is:

34.	The area of the region boun	ded by the curve x = 2y + 1	3 and the lines $y = 1$ and y	=-1 is:		
	(a) 4 sq. units	(b) $\frac{3}{2}$ sq. units	(c) 6 sq. units	(d) 8 sq. units		
35.	Area of the region bounded by the curve $y = \cos x$ between $x = 0$ and $x = \pi$ is:					
	(a) 2 sq. units	(b) 4 sq. units	(c) 3 sq. units	(d) 1 sq. unit		
36.	The area of the region bounded by the curves $y^2 = 9x$, $y = 3x$ is (sq. units):					
	(a) 1 sq. unit	(b) $\frac{1}{2}$ sq. units	(c) $\frac{3}{2}$ sq. units	(d) $\frac{1}{4}$ sq. units		
37.	The area of the region enclosed by the parabola $x^2 = y$ and the lines $y = x + 2$ is :					
	(a) $\frac{3}{2}$ sq. units	(b) $\frac{9}{2}$ sq. units	(c) $\frac{7}{2}$ sq. units	(d) $\frac{5}{2}$ sq. units		
38.	The area of the region boun	ded by the line $2y = 5x + 7$	7, x-axis and the lines $x = 2$	and $x = 8$ is:		
	(a) 32 sq. units	(b) 64 sq. units	(c) 96 sq. units	(d) 72 sq. units		
39.	The area under the curve $y = \cos x - \sin x $, $0 \le x \le \frac{\pi}{2}$, and above x-axis is (in sq. units):					
	(a) $2\sqrt{2}$	(b) $2\sqrt{2} - 2$	(c) $2\sqrt{2}+2$	(d) 0 mm pz (s)		
40.	The area bounded by the x-	eaxis, the curve $y = f(x)$ and	d the lines $x = 1$, $x = b$, is	equal to $\sqrt{b^2+1}-\sqrt{2}$ for all		
i a y	b > 1, then $f(x)$ is:		te lines $y + i2y = 2$ lyes $i4$ an			
	(a) $\sqrt{x-1}$	(b) $\sqrt{x+1}$	(c) $\sqrt{x^2+1}$	(d) $\frac{x}{\sqrt{1+x^2}}$		
41.	What is the area bounded b		T	VITA (5)		
			(c) 2(log 2) sq. units	(d) none of these		
42.	The area of the figure bounded by $y = e^x$, $y = e^{-x}$ and $x = 1$ is :					
	(a) $2(e-1)$	(b) $e + \frac{1}{e} - 2$	(c) $e - \frac{1}{e} + 2$	(d) $e + \frac{1}{e}$		
43.	Area of the triangle formed by the line $x + y = 3$ and angle bisectors of the pair of straight lines $x^2 - y^2 + 2y = 1$ is:					
	(a) 2 sq. units	(b) 4 sq. units	(c) 6 sq. units	(d) 8 sq. units		
44.	The area of the region $R =$	$\{(x, y) : x \le y \text{ and } x^2 + \frac{1}{2}$	$y^2 \le 1$ } is:			
	(a) $\frac{3\pi}{8}$ sq. units	(b) $\frac{5\pi}{8}$ sq. units	(c) $\frac{\pi}{2}$ sq. units	(d) $\frac{\pi}{8}$ sq. units		
45.	The area of the region bour	nded by the curve $y = x x $,	x-axis and the ordinates $x =$	= 1, $x = -1$ is given by :		
	(a) zero	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) 1		
46.	The area between the curve	y = 1 - x and the x-axis i	is equal to:			
	(a) 1 sq. unit	(b) $\frac{1}{2}$ sq. unit	(c) $\frac{1}{3}$ sq. unit	(d) 2 sq. units		
47.	Area intercepted by the curves $y = \cos x$, $x \in [0, \pi]$ and $y = \cos 2x$, $x \in [0, \pi]$, is (in sq. units):					
	$(3) \frac{3\pi}{2}$	(b) $3\sqrt{3}$	(c) $\frac{3\pi}{4}$	(d) $3\sqrt{3}$		
		ennis sq. dinis		4 and part (a)		
48.	The area enclosed by the curve $y = -x^2$ and the straight line $x + y + 2 = 0$ is:					
	(a) $\frac{9}{2}$ sq. units	(b) $\frac{1}{2}$ sq. units	(c) $\frac{5}{2}$ sq. units	(d) $\frac{9}{4}$ sq. units		

- **49.** The area of the region bounded by the curve $y^2 = 2x$ and $x^2 + y^2 = 4x$ is:

- (a) $\left(\pi \frac{4}{3}\right)$ sq. units (b) $\left(\pi \frac{8}{3}\right)$ sq. units (c) $2\left(\pi \frac{4}{3}\right)$ sq. units (d) $2\left(\pi \frac{8}{3}\right)$ sq. units
- **50.** The area of the region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2) using integration is:
 - (a) $\frac{9}{2}$ sq. units
- (b) $\frac{15}{2}$ sq. units
- (c) $\frac{7}{2}$ sq. units
- (d) $\frac{11}{2}$ sq. units

INPUT TEXT BASED MCQ's

51. A child cut a cake with knife. The cake is circular in shape which is represented by $x^2 + y^2 = 16$ and edge of knife represents a straight line by y = x.

Answer the following questions:

- (i) Point of intersection of the given curve and line is:
 - (a) (4, 0)
- (b) $(2\sqrt{2}, 2\sqrt{2})$
- (c) $(2\sqrt{2},0)$
- (d) $(0, 2\sqrt{2})$
- (ii) Which of the following shaded portion represent the area bounded by given two curves?

- (iii) The value of integral $\int_{0}^{\pi} \sqrt{16-x^2} dx$ is :
 - (a) $2(\pi 2)$
- (b) $2(\pi 8)$
- (c) $4(\pi 2)$

- (iv) Area bounded by the circular cake and knife is:
 - (a) 3π sq. units
- (b) $\frac{\pi}{2}$ sq. units
- (c) π sq. units
- (d) 2π sq. units

- (v) Area of whole cake is:
 - (a) 2π sq. units
- (b) 4π sq. units
- (c) 16π sq. units
- (d) 20 sq. units

ANSWERS 5. (b) **6.** (b) 7. (d) **8.** (c) **9.** (a) **10.** (c) 2. (a) **3.** (a) 4. (c) 1. (c) 19. (d) 20. (a) **16.** (a) 17. (d) 18. (a) 11. (d) 12. (a) 13. (a) 14. (c) 15. (b) 28. (a) 29. (a) **30.** (a) **26.** (d) **27.** (b) **21.** (c) **22.** (b) 23. (a) **24.** (b) **25.** (a) **40.** (d) 33. (d) 34. (c) 35. (a) **36.** (b) **37.** (b) 38. (c) **39.** (b) **31.** (c) **32.** (b) 47. (d) **48.** (a) **49.** (d) **50.** (b) **44.** (c) 45. (c) **46.** (a) **42.** (b) **43.** (a) **41.** (b) **51.** (i) (b) (ii) (c) (iii) (a) (iv) (d) (v) (c)

Hints to Some Selected Questions

1. (c) We have, $y = \log x$ and x = 1 and x = 2

Hence, required area =
$$\int_{1}^{2} \log x \, dx = [x \log x - x]_{1}^{2}$$

= $2 \log 2 - 2 + 1 = (\log 4 - 1)$ sq. units

2. (a) $y^2 = x$ and $2y = x \Rightarrow y^2 = 2y \Rightarrow y = 0, 2$

$$\therefore \text{ Required area} = \int_0^2 (y^2 - 2y) dy = \left(\frac{y^3}{3} - y^2\right)_0^2 = \frac{4}{3} \text{ sq. units}$$

4. (c) Given curve is $y(x-2) = 3x + 10 \Rightarrow y = \frac{3x+10}{x-2}$

Required area =
$$\int_{3}^{4} y dx = \int_{3}^{4} \frac{3x+10}{x-2} dx = \left[3x+16\log(x-2)\right]_{3}^{4} = 3+16\log 2$$
 sq. units

5. (b) y = x - 1, if x > 1 and y = -(x - 1), if x < 1

Area =
$$\int_{0}^{1} (1-x)dx + \int_{1}^{2} (x-1)dx = \left[x - \frac{x^{2}}{2}\right]_{0}^{1} + \left[\frac{x^{2}}{2} - x\right]_{1}^{2}$$

= $\left[1 - \frac{1}{2}\right] + \left[0 - \left(\frac{1}{2} - 1\right)\right] = \frac{1}{2} + \frac{1}{2} = 1.$

7. (d) Required area = $\int_{0}^{2} [(2^{x} - (2x - x^{2}))] dx = \left[\frac{2^{x}}{\log 2} - x^{2} + \frac{x^{3}}{3} \right]_{0}^{2}$ $= \frac{4}{\log 2} - 4 + \frac{8}{3} - \frac{1}{\log 2} = \frac{3}{\log 2} - \frac{4}{3}$

9. (a) Given curves are $y = x^2$ and y = xOn solving, we get x = 0, x = 1.

Therefore, required area A =
$$\int_{0}^{1} (x^2 - x) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} \right]_{0}^{1}$$
$$= \frac{1}{3} - \frac{1}{2} = \frac{1}{6} \text{ sq. units.}$$

10. (c) Area =
$$2 \int_{0}^{a} y dx = 2 \int_{0}^{a} \sqrt{4ax} dx$$

= $2 \times 2 \sqrt{a} \times \frac{2}{3} \left[x^{3/2} \right]_{0}^{a}$
= $\frac{8}{3} a^{2}$ sq. units

11. (d) Solving the two equations, we have $x^4 = 64a^3x \Rightarrow x = 0$, 4a

Required area =
$$\int_{0}^{4a} 2a^{1/2}x^{1/2}dx - \int_{0}^{4a} \frac{x^{2}}{4a}dx$$
$$= \frac{32}{3}a^{2} - \frac{16}{3}a^{2} = \frac{16}{3}a^{2} \text{ sq. units}$$

12. (a) The part of circle $x^2 + y^2 = 9$ in between y = 0 and y = 2 is revolved about y-axis. Then a frustum of sphe will be formed.

The volume of this frustum
$$= \pi \int_{0}^{2} x^{2} dy = \pi \int_{0}^{2} (9 - y^{2}) dy = \pi \left[9y - \frac{1}{3}y^{3} \right]_{0}^{2} = \pi \left[9 \times 2 - \frac{1}{3}(2)^{3} - \left(9 - \frac{1}{3} \right) \right]$$

$$= \pi \left[18 - \frac{8}{3} \right] = \frac{46}{3} \pi$$
 cubic units.

14. (c) Required area = $2\int_{0}^{2} y dx = 2\int_{0}^{2} \sqrt{8x} dx$

$$= 2 \times 2\sqrt{2} \int_{0}^{2} x^{\frac{1}{2}} dx = 4\sqrt{2} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{2}$$
$$= \frac{8}{3}\sqrt{2} \left[2^{\frac{3}{2}} - 0 \right] = \frac{8\sqrt{2}}{3} \times 2\sqrt{2} = \frac{32}{3} \text{ sq units}$$

15. (b) Given curve: $y^2 = 4x \Rightarrow x = \frac{y^2}{4} \Rightarrow y = 2\sqrt{x}$

Required area =
$$\int_{0}^{3} x \, dy = \int_{0}^{3} \frac{y^{2}}{4} \, dy = \frac{1}{4} \left[\frac{y^{3}}{3} \right]_{0}^{3} = \frac{1}{3} \times \frac{27}{4} = \frac{9}{4} \text{ sq units.}$$

16. (a) Required area = area of ABCD =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} \sqrt{x} \, dx = \frac{2}{3} \left[x^{3/2} \right]_{1}^{4} = \frac{2}{3} \left[(4^{\frac{3}{2}} - 1^{\frac{3}{2}}) \right]$
= $\frac{2}{3} (8 - 1) = \frac{14}{3}$ sq. units

17. (d) The area of the region bounded by the curve, $x^2 = 4y$, y = 2 and y = 4, and the y-axis in the first quadrant is the area ABCD.

Required area = Area of ABCD =
$$\int_2^4 x dy = \int_2^4 2\sqrt{y} dy = 2\int_2^4 \sqrt{y} dy$$

$$= 2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} = \frac{4}{3}\left[\left(4\right)^{\frac{3}{2}} - \left(2\right)^{\frac{3}{2}}\right] = \frac{4}{3}\left[8 - 2\sqrt{2}\right] \text{ sq. units.}$$

19. (d) We have, $x^2 = 4y + 4$ and 3x + 4y = 0On solving, we get, x = -4, 1

Required area =
$$\int_{-4}^{1} \left[\frac{-3x}{4} - \left(\frac{x^2}{4} - 1 \right) \right] dx$$

$$= \left[\frac{-3}{4} \cdot \frac{x^2}{2} - \frac{x^3}{12} + x \right]_{-4}^{1}$$

$$= \frac{-3}{8} (1 - 16) - \frac{1}{12} (1 + 64) + 5 = \frac{125}{24} \text{ sq. units.}$$

20. (a) Area = $\int_{0}^{2} 2x dx$ = $\left[x^{2}\right]_{0}^{2}$ = 4 sq. units

21. (c) Given curve is $y = x^3$ or $x = y^{1/3}$

∴ Required area =
$$\int_{1}^{8} y^{1/3} dy$$

= $\frac{3}{4} \left[y^{4/3} \right]_{1}^{8} = \frac{3}{4} \times 15 = \frac{45}{4}$ sq. units

22. (b) Area = $2\int_{0}^{4} \sqrt{16 - x^{2}} dx$ = $2\left[\frac{x}{2}\sqrt{16 - x^{2}} + \frac{16}{2}\sin^{-1}\frac{x}{4}\right]_{0}^{4} = 8\pi \text{ sq. units.}$

23. (a) Required area =
$$\int_{0}^{2} y dx + \int_{-1}^{0} (-y) dx = \int_{0}^{2} x dx + \int_{-1}^{0} (-x) dx$$
$$= \left[\frac{x^{2}}{2} \right]_{0}^{2} + \left[-\frac{x^{2}}{2} \right]_{0}^{0} = 2 + \frac{1}{2} = \frac{5}{2} \text{ sq. units.}$$

24. (b) Required area =
$$2\int_{0}^{3} y \, dx = 2\int_{0}^{3} 2\sqrt{x} \, dx$$

= $4 \cdot \left[\frac{x^{3/2}}{\frac{3}{2}} \right]^{3} = \frac{8}{3} [3^{2/3} - 0] = \frac{8}{3} 3 \cdot \sqrt{3} = 8\sqrt{3}$ sq units.

25. (a) Required area =
$$\int_{0}^{4} 2\sqrt{x} \, dx - \int_{0}^{4} x \, dx$$

= $2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} - \left[\frac{x^{2}}{2}\right]_{0}^{4} = \frac{2 \times 2}{3} \left[8\right] - \left[\frac{16}{2}\right]$
= $\frac{32}{3} - 8 = \frac{32 - 24}{3} = \frac{8}{3}$ sq. units

26. (d) Area bounded by the lines =
$$\int_{2}^{4} \frac{y-2}{2} dy = \frac{1}{2} \left[\frac{y^2}{2} - 2y \right]_{2}^{4} = 1$$

27. (b)
$$\int_{-1}^{2} [x] dx = \int_{-1}^{0} [x] dx + \int_{0}^{1} [x] dx + \int_{1}^{2} [x] dx$$
$$= \int_{-1}^{0} -1 dx + \int_{0}^{1} 0 dx + \int_{1}^{2} 1 dx = -[x]_{-1}^{0} + 0 + [x]_{1}^{2}$$
$$= -(0+1) + 0 + [2-1] = -1 + 0 + 1 = 0$$

29. (a) $y = x^2 \Rightarrow x = \sqrt{y}$

$$\therefore \text{ Area} = 2 \int_{0}^{4} \sqrt{y} dy$$

$$= 2 \left[\frac{2}{3} y^{3/2} \right]_{0}^{4} = \frac{4}{3} [8 - 0] = \frac{32}{3} \text{ sq. units.}$$

30. (a)
$$V = 2 \int_{y_1}^{2} \pi x^2 dy = 2\pi \int_{0}^{2a} \left(\frac{y^2}{4a}\right)^2 dy$$
$$= \frac{2\pi}{16a^2} \left(\frac{y^5}{5}\right)_{0}^{2a} = \frac{4\pi a^3}{5} \text{ (in units)}$$

33. (d) Given equations of curve is
$$y = \sin x$$
 between $x = 0$ and $x = \frac{\pi}{2}$

Area of required region =
$$\int_{0}^{\pi/2} \sin x \, dx$$

$$= -\left[\cos x\right]_{0}^{\pi/2} = 1 \text{ sq. unit}$$

38. (c) We have,
$$2y = 5x + 7$$
, x-axis, $x = 2$ and $x = 8$

$$y = \frac{5x+7}{2}$$

Area of the required shaded region

$$= \int_{2}^{8} \left(\frac{5x+7}{2}\right) dx = \frac{1}{2} \left[\frac{5}{2}x^{2} + 7x\right]_{2}^{8}$$

$$= \frac{1}{2} \left[\frac{5}{2}(64-4) + 7(8-2)\right]$$

$$= \frac{1}{2} \left[150 + 42\right] = \frac{1}{2} \times 192 = 96 \text{ sq. units}$$

Required area =
$$2 \int_{0}^{\pi/4} (\cos x - \sin x) dx = [\sin x + \cos x]_{0}^{\pi/4}$$

= $2 \left[\frac{2}{\sqrt{2}} - 1 \right] = (2\sqrt{2} - 2)$ sq. units

40. (d) Given
$$\int_{1}^{b} f(x)dx = \sqrt{b^2 + 1} - \sqrt{2}$$

Differentiating with respect to b

$$f(b) = \frac{b}{\sqrt{b^2 + 1}} \Rightarrow f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

41. (b) Required area =
$$\int_{0}^{\pi/4} \tan x \, dx = \left[\log \sec x \right]_{0}^{\pi/4} = \log \sqrt{2} - 0 = \frac{1}{2} \log 2.$$

Required area =
$$\int_{0}^{1} (e^{x} - e^{-x}) dx = \left[e^{x} + e^{-x} \right]_{0}^{1}$$
$$= (e^{1} + e^{-1}) - (1 + 1) = e + \frac{1}{e} - 2$$

43. (a)
$$x^2 - y^2 + 2y = 1 \Rightarrow x = \pm (y - 1)$$

Bisectors of above line are x = 0 and y = 1

So, area between x = 0, y = 1 and x + y = 3 is shaded region shown in figure.

$$\therefore \text{ Area} = \frac{1}{2} \times 2 \times 2 = 2 \text{ sq. units}$$

44. (c) Required area = 4 (Area of the shaded region in first quadrant)

$$= 4 \int_{0}^{1/\sqrt{2}} (y_1 - y_2) dx = 4 \int_{0}^{1/\sqrt{2}} \left(\sqrt{1 - x^2} - x \right) dx$$

$$= 4 \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x - \frac{x^2}{2} \right]_{0}^{1/\sqrt{2}}$$

$$= 4 \left[\frac{1}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times \frac{\pi}{4} - \frac{1}{4} \right]$$

$$= 4 \left[\frac{1}{4} + \frac{\pi}{8} - \frac{1}{4} \right] = \frac{4\pi}{8} = \frac{\pi}{2} \text{ sq. units}$$

45. (c) The area of the region bounded by the curve y = f(x) and the ordinates x = a, x = b is given by

Area =
$$\begin{vmatrix} b \\ y dx \end{vmatrix}$$

According to the question, $y = x|x| = \begin{cases} x^2, & x \ge 0 \\ -x^2, & x < 0 \end{cases}$
 \therefore Required area = 2 × Area of region OAB

$$=2\int_{0}^{1} x^2 dx = \frac{2}{3} \text{ sq. units}$$

46. (a) The curves are y = 1 - x, y = 1 + x, y = 0 $Area = \frac{1}{2} \times base \times height$ $Base = 2, height = 1 \Rightarrow Area = \frac{1}{2} \times 2 \times 1 = 1 \text{ sq. unit}$

48. (a) We have, $y = -x^2$ or $x^2 = -y$

and the line
$$x + y + 2 = 0$$

Solving the two equations, we get

$$\Rightarrow x - x^2 + 2 = 0 \Rightarrow x^2 - x - 2 = 0$$

$$\Rightarrow$$
 $(x-2)(x+1)=0 \Rightarrow x=-1, 2$

Area of the required shaded region

$$= \left| \int_{-1}^{2} (-x-2)dx - \int_{-1}^{2} -x^{2}dx \right| = \left| -\left[\left(\frac{4}{2} + 4 \right) - \left(\frac{1}{2} - 2 \right) \right] + \frac{1}{3}(8+1) \right|$$

$$= \left| -\left(6 + \frac{3}{2}\right) + \frac{1}{3}(9) \right| = \left| -\frac{15}{2} + 3 \right| = \frac{9}{2} \text{ sq. units}$$

51. (i) (b) We have, $x^2 + y^2 = 16$

and
$$y = x$$

From (i) and (ii),
$$2x^2 = 16 \ x = 2\sqrt{2}$$

 \therefore Point of intersection is $(2\sqrt{2}, 2\sqrt{2})$.

(iii) (a)
$$\int_{2\sqrt{2}}^{4} \sqrt{16 - x^2} dx = \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \cdot \sin^{-1} \left(\frac{x}{4} \right) \right]_{2\sqrt{2}}^{4}$$
$$= 8\sin^{-1}(1) - 4 - 8\sin^{-1} \left(\frac{1}{\sqrt{2}} \right)$$
$$= 8\left(\frac{\pi}{2} \right) - 4 - 8\left(\frac{\pi}{4} \right) = 4\pi - 4 - 2\pi = 2(\pi - 2).$$

(iv) (d) Required area = area (OMA) + area (ABM)

$$= \int_{0}^{2\sqrt{2}} x dx + \int_{2\sqrt{2}}^{4} \sqrt{16 - x^2} dx = 4 + 2(\pi - 2) = 2\pi \text{ sq. units}$$

(v) (c) Area of whole cake = $\pi(4)^2 = 16\pi$ sq. units.