Chapter - 10 VECTOR ALGEBRA

STUDY NOTES

- Scalar and Vector Quantity: A quantity which has only magnitude and no direction is called a scalar quantity e.g., length, distance, speed, etc. And a quantity which has magnitude as well as direction is called vector quantity e.g., velocity, force, weight etc.
- Scalar or Dot Product :
 - (i) $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$, where $\theta(0 \le \theta \le 2\pi)$ is the angle between vectors \overrightarrow{a} and \overrightarrow{b} .
 - (ii) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

Then,
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_2 + a_2 b_2 + a_3 b_3$$
 and $|\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$, $|\overrightarrow{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$

(iii)
$$\cos \theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

- Position vector of point dividing the joint of two points with position vectors \overrightarrow{a} and \overrightarrow{b} in the ratio m:n is given by $\frac{mb+na}{m+n}$.
- Vector or Cross Product :
 - (i) $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \ \hat{n}$, where θ is the angle between the vectors \overrightarrow{a} and \overrightarrow{b} and \hat{n} is a unit vector perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} .

(ii)
$$\sin \theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}||\overrightarrow{b}|}$$

(iii) If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

- (iv) If \overrightarrow{a} and \overrightarrow{b} are any vectors then $(\overrightarrow{a} \times \overrightarrow{b})^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 (\overrightarrow{a} \cdot \overrightarrow{b})^2$
- Area of parallelogram whose adjacent sides are represented by \vec{a} , \vec{b} equals $|\vec{a} \times \vec{b}|$.
- Unit vector perpendicular to \overrightarrow{a} and \overrightarrow{b} is $\frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|}$.
- Area of parallelogram whose diagonals are represented by \overrightarrow{a} and \overrightarrow{b} is $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$.
- Area of triangle whose adjacent sides are represented by \overrightarrow{a} and \overrightarrow{b} is equals $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$.

QUESTION BANK

MULTIPLE CHOICE QUESTIONS

2. If the position vectors of the vertices of a triangle be $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$ and $3\hat{i} + 6\hat{j} - 3\hat{k}$, then the triangle

3. If $\vec{p} = \hat{i} + \hat{j}$, $\vec{q} = 4\hat{k} - \hat{j}$ and $\vec{r} = \hat{i} + \hat{k}$, then the unit vector in the direction of $3\vec{p} + \vec{q} - 2\vec{r}$ is:

(a) $\frac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})$ (b) $\frac{1}{3}(\hat{i}-2\hat{j}-2\hat{k})$ (c) $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k})$ (d) $\hat{i}+2\hat{j}+2\hat{k}$

(c) $\sqrt{62} - 2\sqrt{35}$

(b) Isosceles

(d) Isosceles right angled

(d) $\sqrt{66}$

1. If $\vec{p} = 7\hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{q} = 3\hat{i} + \hat{j} + 5\hat{k}$, then the magnitude of $\vec{p} - 2\vec{q}$ is:

(b) 4

(b) $8\sqrt{3}$

4. If |a| = 3, |b| = 4 and |a + b| = 5, then |a - b| =

(a) $\sqrt{29}$

(a) $6\sqrt{3}$

(a) Right angled(c) Equilateral

	(a) 6	(b) 5	(c) 4	(d) 3
5.	If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, and $\overrightarrow{b} = \overrightarrow{b}$, then x equals :	$\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{c} = x\hat{i} + \hat{k}$	$(x-2)\hat{j} - \hat{k}$. If the vector	\overrightarrow{c} lies in the plane of \overrightarrow{a} and
	(a) 0	(b) 1	` '	(d) -2
6.	If $\vec{a} = 2\hat{i} + 5\hat{j}$ and $\vec{b} = 2\hat{i}$	$-\hat{j}$, then the unit vector alo	ong $\overrightarrow{a} + \overrightarrow{b}$ will be:	
	(a) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$	(b) $\hat{i} + \hat{j}$	(c) $\sqrt{2} (\hat{i} + \hat{j})$	(d) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
7.	If a, b, c are unit vectors su	ach that a + b + c = 0, then	$a \cdot b + b \cdot c + c \cdot a =$	
	(a) 1	(b) 3	(c) $\frac{-3}{2}$	(d) $\frac{3}{2}$
8.	The work done by the force (1, 2, 3) is:	$e F = 2\hat{i} - 3\hat{j} + 2\hat{k} \text{ in dis}$	splacing a particle from the	point (3, 4, 5) to the point
	(a) 2 units	(b) 3 units	(c) 4 units	(d) 5 units
9.	If the vectors $3\hat{i} + 2\hat{j} - \hat{k}$	and $6\hat{i} - 4x\hat{j} + y\hat{k}$ are paral	llel, then the value of x and	y will be:
	(a) $-1, -2$	(b) 1, −2		(d) 1, 2
10.	If θ be the angle between the	ne unit vectors a and b , then	$a \cos \frac{\theta}{2} =$	
		(b) $\frac{1}{2} a + b $	4	(d) $\frac{ a+b }{ a-b }$
11.	The value of b such that sea vectors $(2\hat{i} + 4\hat{j} + 5\hat{k})$ and		$(\hat{i} + \hat{j} + \hat{k})$ with the unit vector	tor parallel to the sum of the
	(a) -2	(b) -1	(c) 0	(d) 1
12.	The position vector of the p	oint which divides the join	of points with position vector	ors $\overrightarrow{a} + \overrightarrow{b}$ and $2\overrightarrow{a} - \overrightarrow{b}$ in the
	ratio 1:2 is:			w succeeding to some o
	(a) $\frac{3\vec{a}+2\vec{b}}{3}$	(b) \overrightarrow{a}	(c) $\frac{5\overrightarrow{a}-\overrightarrow{b}}{3}$	(d) $\frac{4\overrightarrow{a}+\overrightarrow{b}}{3}$
13.	If $ \overrightarrow{a} = 8$, $ \overrightarrow{b} = 3$ and $ \overrightarrow{a} $	$\times \overrightarrow{b} = 12$, then value of \overrightarrow{a}	\overrightarrow{b} is:	

(c) $12\sqrt{3}$

(d) $4\sqrt{3}$

14.	If $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i}$ to $\lambda \overrightarrow{b} + \overrightarrow{c}$ is:	$+\hat{j} - 2\hat{k}$ and $\vec{c} = \hat{i} + 3\hat{j}$	$-\hat{k}$, then the value of λ	such that \overrightarrow{a} is perpendicular
	(a) 2	(b) -2	(c) 3	(d) 0
15.	The projection of vector \overrightarrow{a}	$=2\hat{i}-\hat{j}+\hat{k}$ along $\vec{b}=\hat{i}+\hat{k}$	$-2\hat{j}+2\hat{k}$ is:	
	(a) $\frac{1}{3}$	(b) 2	(c) $\frac{2}{3}$	(d) $\frac{4}{3}$
16.	The angle between two vect	tors \overrightarrow{a} and \overrightarrow{b} with magnitud	es $\sqrt{3}$ and 4 respectively a	$\operatorname{nd} \overrightarrow{a} \cdot \overrightarrow{b} = 2\sqrt{3} \text{ is :}$
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{5\pi}{2}$
17.	The value of λ for which the	3	4	4
17.	•	2	5	2
		(b) $\frac{3}{2}$	(c) $\frac{3}{2}$	(d) $\frac{2}{5}$
18.	The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$, \hat{i}	$+\lambda\hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda\hat{k}$	are coplanar if	
			(c) $\lambda = 1$	(d) $\lambda = -1$
19.	If θ is the angle between th	e vectors $\hat{i} + 3\hat{j} + 7\hat{k}$ and	$\hat{i} - 3\hat{j} + 7\hat{k}$, then $\cos\theta$ is equal to $\hat{i} = 3\hat{j} + 7\hat{k}$.	qual to
	(a) $\frac{41}{59}$	(b) $\frac{40}{59}$	(c) $\frac{42}{59}$	(d) $\frac{39}{59}$
20.	If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vector	ors such that $ \overrightarrow{a} = 3$, $ \overrightarrow{b} = 4$	and $ \overrightarrow{c} = \sqrt{24}$ and sum of	any two vectors is orthogonal
	to the third vector, then $ \vec{a} $			35. The angle between any
	(a) 7	(b) $5\sqrt{2}$	(c) $7\sqrt{2}$	(d) $6\sqrt{2}$
21.	Area of the parallelogram w	hose adjacent sides are give	en by the vectors $\hat{i} - \hat{j} + 3\hat{k}$	\hat{k} and $2\hat{i} - 7\hat{i} + \hat{k}$ is:
	(a) $\sqrt{225}$ sq. units		(c) $\sqrt{650}$ sq. units	
22.	If \overrightarrow{a} and \overrightarrow{b} are unit vectors	such that $\overrightarrow{a} + \overrightarrow{b}$ is also a v	unit vector, then the angle be	etween \overrightarrow{a} and \overrightarrow{b} is:
	(a) 60°	(b) 90°	(c) 120°	(d) 150°
23.	The vector \overrightarrow{c} such that $ \overrightarrow{c} $			38. The anii vector sergen
			100	(d) $\frac{200}{(\hat{i} + \hat{i} + \hat{k})}$
	(a) $\sqrt{3} (l+j+k)$	(b) $\frac{125}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$	(c) $\frac{1}{\sqrt{3}}(1+j+k)$	(d) $\sqrt{3}$ $(l+j+k)$
24.	If $ \overrightarrow{a} \times \overrightarrow{b} ^2 + \overrightarrow{a} \cdot \overrightarrow{b} ^2 = 144$ a	and $ \overrightarrow{a} = 4$, then $ \overrightarrow{b} $ is equal	al to:	Ansengice also with
	(a) 1	(b) 2	(c) 3	(d) 4
25.	The number of vectors of u			
	(a) one	(b) two	(c) three	(d) infinite
26.	If \vec{a} and \vec{b} are the position such that BC = 1.5 BA is:	vectors of A and B respective	vely then the position vector	of a point C in BA produced
	(a) $\frac{\overrightarrow{a}-\overrightarrow{b}}{2}$	(b) $\frac{3\overrightarrow{a}-\overrightarrow{b}}{2}$	(c) $\frac{3\overrightarrow{a}+\overrightarrow{b}}{2}$	(d) $\frac{\vec{a}-3\vec{b}}{2}$
27.	The vector \overrightarrow{r} is inclined at \overrightarrow{r} is:	equal angles to the three axe	es. If the magnitude of \overrightarrow{r} is	$2\sqrt{3}$ units, then the value of
	(a) $2(\hat{i} + \hat{j} + \hat{k})$	(b) $3(\hat{i} + \hat{j} + \hat{k})$	(c) $2(\hat{i} - \hat{j} - \hat{k})$	(d) $2(\hat{i} + \hat{j} - \hat{k})$
28.	The sine of the angle between	een the vectors $\vec{a} = 3\hat{i} + \hat{j}$	$+2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$	is:
	(a) $\frac{1}{\sqrt{7}}$	(b) $\frac{2}{\sqrt{7}}$	(c) $\frac{3}{\sqrt{7}}$	(d) $\frac{4}{\sqrt{7}}$

29.	The vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 is:			
	(a) $\hat{i} - 2\hat{j} + 2\hat{k}$	(b) $\frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$	(c) $3(\hat{i} - 2\hat{j} + 2\hat{k})$	(d) $9(\hat{i} - 2\hat{j} + 2\hat{k})$
30.	The value of λ such that the	e vectors the vectors $\overrightarrow{a} = 2$	$\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j}$	+ $3\hat{k}$ are orthogonal is:
	(a) 0	(b) 1	(c) $\frac{3}{2}$	(d) $\frac{-5}{2}$
31.	For any vector \overrightarrow{a} , the value	of $(\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times$	$\vec{a} \times \hat{k})^2$ is:	
	(a) \overrightarrow{a}^2	(b) $3\overrightarrow{a}^2$	(c) $4\overrightarrow{a}^2$	(d) $2\overrightarrow{a}^2$
32.	The dot product of a vector The vector is:	with the vectors $\hat{i} + \hat{j} - 3\hat{k}$,	$\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4$	\hat{k} are 0, 5 and 8 respective
	(a) $\hat{i} + 2\hat{j} + \hat{k}$	(b) $-\hat{i} + 3\hat{j} - 2\hat{k}$	(c) $\hat{i} + 2\hat{j} + 3\hat{k}$	(d) $\hat{i} - 3\hat{j} - 3\hat{k}$
33.	If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-cop	planar vectors, then the valu	the of $\frac{\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})}{(\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}} + \frac{\overrightarrow{b} \cdot (\overrightarrow{a} \times \overrightarrow{c})}{\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})}$	is:
	(a) 0	(b) 2	(c) 1	(d) None of these
34.	If the middle points of side centre of triangle DEF, when			
	(a) $\frac{1}{3}(\hat{i} + \hat{j} + \hat{k})$	(b) $(\hat{i} + \hat{j} + \hat{k})$	(c) $2(\hat{i} + \hat{j} + \hat{k})$	(d) $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$
35.	The angle between any two		to a to the same of the same o	wit votage faight adt at
	(a) 45°	(b) 60°	(c) 30°	(d) $\tan^{-1}(2\sqrt{2})$
36.	Which one of the following	is the unit vector perpendic	cular to both $\vec{a} = -\hat{i} + \hat{j} +$	\hat{k} and $\vec{b} = \hat{i} - \hat{j} - \hat{k}$?
	(a) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$	(b) \hat{k}	(c) $\frac{\hat{j} + \hat{k}}{\sqrt{2}}$	(d) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
37.	If $a \cdot b = a \cdot c$ and $a \times b = a$		is:	
	(a) $a \parallel (b - c)$		(c) $a = 0$ or $b = c$	(d) None of these
38.	The unit vector perpendicular			3. The vector is such that
	(a) $\frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7}$	(b) $\frac{2\hat{i} - 3\hat{j} - 6\hat{k}}{7}$	(c) $\frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7}$	(d) $\frac{2\hat{i} + 3\hat{j} + 6\hat{k}}{7}$
39.	Let a , b and c be three vect		c), $ a = c = 1$, $ b = 4$ and	
	If $b - 2c = \lambda a$, then λ equa	ls:		
40	(a) 1	(b) -1	(c) 2	(d) -4
40.	With respect to a rectangula $\overrightarrow{a} = 4\hat{i} - \hat{j}$, $\overrightarrow{b} = -3\hat{i} + 2\hat{j}$ The unit vector \hat{r} along the	and $\overrightarrow{c} = -\hat{k}$ where \hat{i} , \hat{j} , \hat{k}	are unit vectors, along the	
	(a) $\hat{r} = \frac{1}{\sqrt{3}} (\hat{i} + \hat{j} - \hat{k})$	(b) $\hat{r} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j} - \hat{k})$	(c) $\hat{r} = \frac{1}{3} (\hat{i} - \hat{j} + \hat{k})$	(d) $\hat{r} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j} + \hat{k})$
41.	Two vectors \overrightarrow{A} and \overrightarrow{B} are so	uch that $ \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{B} $. T	The angle between the two v	ectors will be:
	(a) 60°	(b) 90°	(c) 180°	(d) 0°
42.	If vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2$	$2\hat{j} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$	are coplanar, then the value	of a is:
	(a) 2	(b) −2	(c) -1	(d) -4
43.	If vectors $(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})$	$a^2 = 676$ and $ \vec{b} = 2$ then $ \vec{a} $	is equal to:	

(c) 39

(a) 13

(b) 26

(d) None of these

45.	For vectors b and c and any (a) $ a ^2$	y non-zero vector a , the val (b) $2 a ^2$		$(b+c)$ } · $(b+c)$ is : (d) None of these
46.	If the middle points of side	s BC, CA and AB of triang	gle ABC are respectively D,	E, F then position vector of
			C are respectively $\hat{i} + \hat{j}, \hat{j} +$	
	(a) $\frac{1}{3}(\hat{i} + \hat{j} + \hat{k})$	(b) $(\hat{i} + \hat{j} + \hat{k})$	(c) $2(\hat{i} + \hat{j} + \hat{k})$	$(d) \frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$
47.	If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar $(2\lambda - 1)\overrightarrow{c}$ are non coplanar	ar vectors and λ is a real for	number, then the vectors \overline{a}	$\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda \overrightarrow{b} + 4\overrightarrow{b}$ and
	(a) no value of λ(c) all except two values of	of λ	(b) all except one value of (d) all values of λ	fλ
48.	If the position vectors of the vertices A, B, C of a triangle ABC are $7\hat{j} + 10\hat{k}$, $-\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$ respectively, the triangles is:			
	(a) equilateral		(b) isosceles	
	(c) scalene		(d) right angled and isosce	eles also
49. If θ be the angle between vectors $a = \hat{i} + 2\hat{j} + 3\hat{k}$ and $b = 3\hat{i} + 2\hat{j} + \hat{k}$, then co				
.,,	(a) $\frac{5}{7}$,	(c) $\frac{4}{7}$	(d) $\frac{1}{2}$
50.	The angle between the vector	ors $\vec{A} = \hat{i} + \hat{i} - 2\hat{k}$ and \vec{R}	$= -\hat{i} + 2\hat{i} - \hat{k} \text{ is } :$	64. If c. s are unit becton
20.				(1) (00
	(a) 15°	(b) 45°	(c) 35°	(d) 60°
51.	A vector of magnitude 5 and	d perpendicular to $(i - 2j)$	(2i + j - 3k) is:	
	(a) $\frac{5\sqrt{3}}{3} (\hat{i} + \hat{j} + \hat{k})$	(b) $\frac{5\sqrt{3}}{3} (\hat{i} + \hat{j} - \hat{k})$	(c) $\frac{5\sqrt{3}}{3}(\hat{i}-\hat{j}+\hat{k})$	(d) $\frac{5\sqrt{3}}{3}(-\hat{i} + \hat{j} + \hat{k})$
52.	$\hat{i} \times (\hat{j} \times \hat{k}) + \hat{j} \times (\hat{k} \times \hat{i}) +$	$\hat{k} \times (\hat{i} \times \hat{j})$ equals:		
		(b) \hat{j}	(c) \hat{k}	(d) 0
53.		$\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$	$a \neq b \neq c \neq 1$) are coplar	har, then the value of $\frac{1}{1-a}$ +
	$\frac{1}{1-b} + \frac{1}{1-c} =$ (a) -1	(b) wind \(\theta \xi_0\)	(b) 20 units	
	(a) -1	(b) $\frac{1}{2}$	(c) $\frac{1}{2}$ to easily set of sales	(d) 1
	Let $a = 2\hat{i} - \hat{j} + \hat{k}$, $b = \hat{i} + \hat{k}$	$2\hat{j} - \hat{k} \text{ and } c = \hat{i} + \hat{j} - 2\hat{k}$	be three vectors. A vector in	the plane of b and c whose
	projection on a is of magnit	There is a second of always and		
	(a) $2\hat{i} + 3\hat{j} - 3\hat{k}$	(b) $2\hat{i} + 3\hat{j} + 3\hat{k}$	(c) $2\hat{i} - \hat{j} + 5\hat{k}$	(d) $2\hat{i} + \hat{j} + 5\hat{k}$
55.	The shortest distance betwee parameters) is:	en the lines $r = (3\hat{i} - 2\hat{j})$	$-2\hat{k}) + \hat{i}t \text{ and } r = (\hat{i} - \hat{j})$	$+2\hat{k}$) + $\hat{j}s$ (t and s being
	(a) $\sqrt{21}$	(b) $\sqrt{102}$	(c) 4	(d) 3
56.	The image of the point with	position vector $\hat{i} + 3\hat{k}$ in	the plane $r \cdot (\hat{i} + \hat{i} + \hat{k}) = 1$	is:
			(c) $-\hat{i} - 2\hat{j} + \hat{k}$	

44. What is the vector joining the points (3, 1, 14) and (-2, -1, -6)?

(a) $-\hat{i} + 2\hat{j} + 12\hat{k}$ (b) $-\hat{i} - 2\hat{j} + 12\hat{k}$ (c) $-\hat{i} - 2\hat{j} - 12\hat{k}$

(d) $5\hat{i} + 2\hat{j} + 20\hat{k}$

If a, b, c are non-coplanar	unit vectors such that $a \times$	$(b \times c) = \frac{b+c}{\sqrt{2}}$, then the an	ngle between a and b is:
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{3\pi}{4}$	(d) π
If the points $P(\vec{a} + \vec{b} + \vec{c})$), $Q(2\overrightarrow{a} + 3\overrightarrow{b})$, $R(\overrightarrow{b} + t\overrightarrow{c})$	are collinear, where \vec{a} , \vec{b} , \vec{c}	are three non-coplanar vector,
	(b) -2	(c) $\frac{1}{2}$	(d) $\frac{-1}{2}$
		. 4	2
			(4) As the under between
3			(d) 0
If \overrightarrow{a} , \overrightarrow{b} are unit vectors su	such that $\overrightarrow{a} - \overrightarrow{b}$ is also a un	it vector, then the angle bet	ween \vec{a} and \vec{b} is:
(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$
(a) 7	(b) 4	(c) $\sqrt{7}$	(d) $\sqrt{19}$
A vector of magnitude 4 v	which is equally inclined to	the vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$ and	d $\hat{k} + \hat{i}$ is:
(a) $\frac{4}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$	(b) $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$	$\text{(c)} \ \frac{4}{\sqrt{3}} \left(\hat{i} + \hat{j} + \hat{k} \right)$	(d) $\frac{1}{\sqrt{3}}\left(-\hat{i}-\hat{j}-\hat{k}\right)$
			from the point $\hat{i} + 2\hat{j} + 3\hat{k}$ to
			(d) 40 units
A non-zero vector \overrightarrow{a} is particle plane determined by the	arallel to the line of interse the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$. The	ection of the plane determine angle between \vec{a} and \hat{i} –	ed by the vectors \hat{i} , $\hat{i} + \hat{j}$ and $2\hat{j} + 2\hat{k}$ is:
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{2}$
If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-zero n	on collinear vectors such the	hat $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{c}$	\overrightarrow{a} , then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$
(a) abc	(b) 0	(c) 1	(d) 2
	lues of λ for which the vect	ors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} +$	\hat{k} and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar
(a) 0	(b) 1	(c) $\pm \sqrt{2}$	(d) $\pm \sqrt{3}$
			6
	If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ If the points $P(\vec{a} + \vec{b} + \vec{c})$ the value of t is: (a) 2 If $ \vec{a} - \vec{b} = \vec{a} = \vec{b} = 1$, (a) $\frac{\pi}{3}$ If \vec{a} , \vec{b} are unit vectors su (a) $\frac{\pi}{6}$ If \vec{a} , \vec{b} are unit vectors su (a) $\frac{\pi}{6}$ If \vec{a} , \vec{b} are unit vectors su (a) 7 A vector of magnitude 4 vector of the point $5\hat{i} + 4\hat{j} + \hat{k}$. Then (a) 50 units A unit vector perpendicular (a) $\frac{1}{\sqrt{26}}(4\hat{i} + 3\hat{j} - \hat{k})$ A non-zero vector \vec{a} is particle and determined by the plane determined by the plane determined by the plane of distinct values: (a) $\frac{\pi}{4}$ If \vec{a} , \vec{b} , \vec{c} are non-zero in (a) abc The number of distinct values:	If a , b , c are non-coplanar unit vectors such that $a \times (a) \frac{\pi}{4}$ (b) $\frac{\pi}{2}$ If the points $P(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$, $Q(2\overrightarrow{a} + 3\overrightarrow{b})$, $R(\overrightarrow{b} + t\overrightarrow{c})$ the value of t is: (a) 2 (b) -2 If $ \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} = \overrightarrow{b} = 1$, then the angle between \overrightarrow{a} (a) $\frac{\pi}{3}$ (b) $\frac{3\pi}{4}$ If \overrightarrow{a} , \overrightarrow{b} are unit vectors such that $ \overrightarrow{a} - \overrightarrow{b} $ is also a unit (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ If \overrightarrow{a} , \overrightarrow{b} are unit vectors such that $ \overrightarrow{a} + \overrightarrow{b} = 1$ and $ \overrightarrow{a} $ (a) 7 (b) 4 A vector of magnitude 4 which is equally inclined to (a) $\frac{4}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$ (b) $\frac{4}{\sqrt{3}}(\hat{i} + \hat{j} - \hat{k})$ A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ at the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total work done by the form (a) 50 units (b) 20 units A unit vector perpendicular to the plane of $\overrightarrow{a} = 2\hat{i} - (a) \frac{1}{\sqrt{26}}(4\hat{i} + 3\hat{j} - \hat{k})$ (b) $\frac{1}{7}(2\hat{i} - 6\hat{j} - 3\hat{k})$ A non-zero vector \overrightarrow{a} is parallel to the line of interset the plane determined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$. The (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-zero non collinear vectors such the number of distinct values of λ for which the vectors :	If a , b , c are non-coplanar unit vectors such that $a \times (b \times c) = \frac{b+c}{\sqrt{2}}$, then the arm (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ If the points $P(\vec{a} + \vec{b} + \vec{c})$, $Q(2\vec{a} + 3\vec{b})$, $R(\vec{b} + i\vec{c})$ are collinear, where \vec{a} , \vec{b} , \vec{c} the value of t is: (a) 2 (b) -2 (c) $\frac{1}{2}$ If $ \vec{a} - \vec{b} = \vec{a} = \vec{b} = 1$, then the angle between \vec{a} and \vec{b} is: (a) $\frac{\pi}{3}$ (b) $\frac{3\pi}{4}$ (c) $\frac{\pi}{4}$ If \vec{a} , \vec{b} are unit vectors such that $\vec{a} - \vec{b}$ is also a unit vector, then the angle between \vec{a} and \vec{b} is: (a) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ If \vec{a} , \vec{b} are unit vectors such that $ \vec{a} + \vec{b} = 1$ and $ \vec{a} - \vec{b} = \sqrt{3}$, then $ \vec{3}\vec{a} + 2\vec{b} $ (a) 7 (b) 4 (c) $\sqrt{7}$ A vector of magnitude 4 which is equally inclined to the vectors $\hat{i} + \hat{j}, \hat{j} + \hat{k}$ and (a) $\frac{4}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$ (b) $\frac{4}{\sqrt{3}}(\hat{i} + \hat{j} - \hat{k})$ (c) $\frac{4}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$ A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total work done by the forces is: (a) 50 units (b) 20 units (c) 30 units A unit vector perpendicular to the plane of $\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$ and $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$. (a) $\frac{1}{\sqrt{26}}(4\hat{i} + 3\hat{j} - \hat{k})$ (b) $\frac{1}{7}(2\hat{i} - 6\hat{j} - 3\hat{k})$ (c) $\frac{1}{7}(3\hat{i} + 2\hat{j} + 6\hat{k})$ A non-zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$. The angle between \vec{a} and $\hat{i} - (a) \frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ If \vec{a} , \vec{b} , \vec{c} are non-zero non collinear vectors such that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times (a)$ abc (b) 0 (c) 1 The number of distinct values of λ for which the vectors $-\lambda^2\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2\hat{j} + i$ is:

(c) 3[abc]

57. If $\overrightarrow{A} = \hat{i} - 2\hat{j} - 3\hat{k}$, $\overrightarrow{B} = 2\hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{C} = \hat{i} + 3\hat{j} - 2\hat{k}$, then $(\overrightarrow{A} \times \overrightarrow{B}) \times \overrightarrow{C}$ is:

(b) 2[abc]

60. The value of $[a - b \ b - c \ c - a]$ where |a| = 1, |b| = 5 and |c| = 3 is :

58. $a[(b+c) \times (a+b+c)]$ is equal to :

59. If $u = \hat{i} \times (a \times \hat{i}) + \hat{j} \times (a \times \hat{j}) + \hat{k} \times (a \times \hat{k})$, then

(a) [abc]

(a) u = 0

(a) $5(-\hat{i} + 3\hat{j} + 4\hat{k})$ (b) $4(-\hat{i} + 3\hat{j} + 4\hat{k})$ (c) $5(-\hat{i} - 3\hat{j} - 4\hat{k})$

(b) $u = \hat{i} + \hat{j} + \hat{k}$

(d) $4(\hat{i} + 3\hat{j} + 4\hat{k})$

(d) 0

(d) u = a

- 72. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} \hat{k}$, then \vec{b} is:
 - (a) $\hat{i} \hat{i} + \hat{k}$
- (b) $2\hat{i} \hat{k}$

(d) $2\hat{i}$

INPUT TEXT BASED MCQ's

73. If \hat{i},\hat{j} and \hat{k} are unit vectors along positive directions of the coordinate axes, then every vector \vec{r} can be represented as $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ uniquely.

Answer the following questions:

- (i) If $x(\hat{j} + \hat{k}) + y(-\hat{j} + 2\hat{k}) + z\hat{k} = \hat{i}$, then
 - (a) x = 0, y = 1, z = -1

(b) x = -1, y = 1, z = 1

(c) no real values of x, y, z exist

- (d) all real values of x, y, z
- (ii) If $\vec{a} = 3\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = m\hat{i} 2\hat{j} 3\hat{k}$, then the value of m for which \vec{a} and \vec{b} are perpendicular is:

(c) $\frac{-4}{3}$

- (iii) If $x(\hat{i} + \hat{j} + 3\hat{k}) + y(3\hat{i} 3\hat{j} + \hat{k}) + z(-4\hat{i} + 5\hat{j}) = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$ where at least one of x, y, z is not zero, then the number of distinct values of λ is:

- (iv) If $x(2\hat{i} \hat{j} + \hat{k}) + y(\hat{i} + 2\hat{j} 3\hat{k}) + z(3\hat{i} + a\hat{j} + 5\hat{k}) = 0$ where x, y, z are scalars such that $(x, y, z) \neq (0, 0, 0)$ then the value of a is:
 - (a) -2

(c) -4

(d) 2

- (v) The value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector is:
 - (a) $\pm \frac{1}{\sqrt{3}}$
- (b) $\sqrt{3}$

- (c) $\pm \frac{1}{\sqrt{2}}$
- (d) $\pm \sqrt{2}$
- 74. Nishi bought an air plant holder which is shaped like a tetrahedron.

Let A, B, C and D are the coordinates of the air plant holder.

where A = (1, 2, 1), B = (2, 1, 3), C = (3, 2, 3) and D = (4, 3, 2).

Answer the following questions:

- (i) The position vector of \overrightarrow{AB} is:

 - (a) $\hat{i} 2\hat{j} 3\hat{k}$ (b) $\hat{i} \hat{j} + 2\hat{k}$
- (c) $\hat{i} + \hat{j} + \hat{k}$
- (d) $\hat{i} \hat{j} \hat{k}$

- (ii) The position vector of \overrightarrow{AC} is:
 - (a) $2\hat{i} + 2\hat{k}$
- (b) $2\hat{i} 2\hat{j} 2\hat{k}$
- (c) $2\hat{i} 2\hat{j}$
- (d) $2\hat{j} + 2\hat{k}$

- (iii) What is the area of $\triangle ABC$?
 - (a) $\frac{\sqrt{3}}{2}$ sq. units (b) $\frac{2}{\sqrt{3}}$ sq. units
- (c) $\sqrt{3}$ sq. units
- (d) $\frac{1}{2}\sqrt{2}$ sq. units

- (iv) The position vector of \overrightarrow{AD} is:
 - (a) $3\hat{i} 2\hat{j} + 2\hat{k}$ (b) $3\hat{i} \hat{j} \hat{k}$
- (c) $\hat{i} \hat{j} + \hat{k}$
- (d) $3\hat{i} + \hat{j} + \hat{k}$

- (v) The unit vector along AD is:

- (a) $\frac{1}{\sqrt{11}}(3\hat{i}+\hat{j}+\hat{k})$ (b) $\frac{1}{\sqrt{13}}(3\hat{i}+\hat{j}+\hat{k})$ (c) $\frac{1}{2\sqrt{3}}(3\hat{i}+2\hat{j}+\hat{k})$ (d) $\frac{1}{3\sqrt{2}}(2\hat{i}+\hat{j}-\hat{k})$

ANSWERS 1. (d) 2. (d) 3. (a) 4. (b) 5. (d) 6. (d) 7. (c) 10. (b) **8.** (a) 9. (a) 11. (d) 12. (d) 14. (b) 16. (b) 13. (c) 15. (c) 17. (a) 18. (a) 19. (a) 20. (a) 26. (b) 21. (b) 22. (c) 24. (c) 23. (c) 25. (b) 27. (a) 28. (b) 29. (c) 30. (d) 33. (a) 31. (d) 32. (a) 34. (d) 35. (d) **36.** (a) 37. (c) 38. (c) **39.** (d) **40.** (a) 42. (d) 44. (d) 41. (b) 43. (a) 45. (d) 46. (d) 47. (c) **48.** (d) 49. (a) **50.** (d) 51. (a) 52. (d) 53. (d) 54. (a) 55. (c) 56. (c) 57. (a) **58.** (d) **59.** (c) **60.** (a) **61.** (c) **62.** (a) **63.** (a) 64. (b) 65. (c) **66.** (c) 67. (d) **68.** (c) **69.** (a) 70. (b) 71. (c) 72. (c) 73. (i) (c) (ii) (b) (iii) (a) (iv) (c) (v) (a) 74. (i) (b) (ii) (a) (iii) (c) (iv) (d) (v) (a)

Hints to Some Selected Questions

$$|p - 2q| = \sqrt{1 + 16 + 49} = \sqrt{66}$$
3. (a) $\vec{p} = \hat{i} + \hat{j}$, $\vec{q} = 4\hat{k} - \hat{j}$ and $\vec{r} = \hat{i} + \hat{k}$

Vector in the direction of $3\vec{p} + \vec{q} - 2\vec{r} = 3(\hat{i} + \hat{j}) + (4\hat{k} - \hat{j}) - 2(\hat{i} + \hat{k})$

$$= 3\hat{i} + 3\hat{j} + 4\hat{k} - \hat{j} - 2\hat{i} - 2\hat{k} = \hat{i} + 2\hat{j} + 2\hat{k}$$

$$\Rightarrow \text{Unit vector is } \frac{1}{3}(\hat{i} + 2\hat{j} + 2\hat{k})$$

4. (b) We know that,
$$|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$$

 $\therefore 25 + |a-b|^2 = 2(9+16) \Rightarrow |a-b| = 5$

1. (d) $p - 2q = \hat{i} - 4\hat{j} - 7\hat{k}$

5. (d)
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
; $\overrightarrow{b} = \hat{i} - \hat{j} + 2\hat{k}$; and $\overrightarrow{c} = x\hat{i} + (x - 2)\hat{j} + \hat{k}$

$$\begin{vmatrix} x & x - 2 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 0 \Rightarrow 3x + 2 - x + 2 = 0 \Rightarrow x = -2$$

6. (d)
$$a + b = 4\hat{i} + 4\hat{j}$$
, therefore, unit vector $\frac{4(\hat{i} + \hat{j})}{\sqrt{32}} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$.

7. (c) Squaring
$$(a + b + c) = 0$$

We get $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 0$
 $\Rightarrow |a|^2 + |b|^2 + |c|^2 + 2(ab + bc + ca) = 0 \Rightarrow ab + bc + ca = -\frac{3}{2}$

8. (a) Here,
$$F = 2\hat{i} - 3\hat{j} + 2\hat{k}$$
, $d = -2\hat{i} - 2\hat{j} - 2\hat{k}$
Work done = F.d. = $-4 + 6 - 4 = -2$ or 2 units.

9. (a) Obviously,
$$\frac{3}{6} = \frac{2}{-4x} = \frac{-1}{y} \Rightarrow x = -1 \text{ and } y = -2.$$

10. (b)
$$(a+b)$$
: $(a+b) = |a|^2 + |b|^2 + 2ab$ or $|a+b|^2 = 2.2 \cos^2 \frac{\theta}{2} \Rightarrow \cos \frac{\theta}{2} = \frac{1}{2} |a+b|$.

12. (d) Applying section formulas the position vector of the required point is
$$\frac{2(\overrightarrow{a} + \overrightarrow{b}) + 1(2\overrightarrow{a} - \overrightarrow{b})}{2+1} = \frac{4\overrightarrow{a} + \overrightarrow{b}}{3}$$
.

13. (c) Using the formula
$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| |\sin \theta|$$
, we get $\theta = \pm \frac{\pi}{6}$
Therefore, $|\vec{a} \cdot \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cos \theta = 8 \times 3 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$

14. (b) We have,
$$\lambda \vec{b} + \vec{c} = \lambda(\hat{i} + \hat{j} - 2\hat{k}) + (\hat{i} + 3\hat{j} - \hat{k}) = (\lambda + 1)\hat{i} + (\lambda + 3)\hat{j} - (2\lambda + 1)\hat{k}$$

Since,
$$\overrightarrow{a} \perp (\lambda \overrightarrow{b} + \overrightarrow{c})$$
, $\overrightarrow{a} \cdot (\lambda \overrightarrow{b} + \overrightarrow{c}) = 0$

$$\Rightarrow (2\hat{i} - \hat{j} + \hat{k}) [(\lambda + 1)\hat{i} + (\lambda + 3)\hat{j} - (2\lambda + 1)\hat{k}] = 0$$

$$\Rightarrow 2(\lambda + 1) - 1(\lambda + 3) - (2\lambda + 1) = 0 \Rightarrow \lambda = -2$$

15. (c) Projection of a vector \vec{a} on \vec{b} is

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{(2\hat{i} - \hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} + 2\hat{k})}{\sqrt{1 + 4 + 4}} = \frac{2}{3}$$

16. (b) Here, $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 4$ and $\vec{a} \cdot \vec{b} = 2\sqrt{3}$

From scalar product, we know that

$$\therefore \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \Rightarrow 2\sqrt{3} = \sqrt{3} \cdot 4 \cdot \cos \theta$$

$$\Rightarrow \cos \theta = \frac{2\sqrt{3}}{\sqrt{3} \cdot 4} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

17. (a) Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

If
$$\overrightarrow{a} \parallel \overrightarrow{b}$$
 $\therefore \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} \Rightarrow \frac{3}{2} = \frac{-6}{-4} = \frac{1}{\lambda} \Rightarrow \frac{1}{\lambda} = \frac{3}{2} \Rightarrow \lambda = \frac{2}{3}$

19. (a)
$$\cos \theta = \frac{1-9+49}{\sqrt{59}\sqrt{59}} = \frac{41}{59}$$

20. (a) By hypothesis,

$$(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = 0$$
; $(\overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{a} = 0$ and $(\overrightarrow{c} + \overrightarrow{a}) \times \overrightarrow{b} = 0$

Therefore, $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 0$

Now,
$$|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = 9 + 16 + 24 + 2 \times 0 = 49$$

$$\therefore |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| = 7$$

21. (b) Area =
$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

Area of
$$||gm = |\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{400 + 25 + 25} = \sqrt{450}$$
 sq. units

22. (c) We have : $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}| = 1$

Now,
$$|\overrightarrow{a} \times \overrightarrow{b}|^2 = 1 \Rightarrow (\overrightarrow{a} + \overrightarrow{b})^2 = 1$$

$$\Rightarrow (\overrightarrow{a})^2 + (\overrightarrow{b})^2 + 2(\overrightarrow{a} \cdot \overrightarrow{b}) = 1 \Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + 2|\overrightarrow{a}||\overrightarrow{b}| \cos \theta = 1 \Rightarrow \cos \theta = \frac{-1}{2} \Rightarrow \theta = 120^\circ.$$

23. (c) Let
$$\overrightarrow{c} = x\hat{i} + y\hat{j} + z\hat{k}$$
 $\therefore \overrightarrow{c} \cdot \hat{i} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot \hat{i} = x$

Similarly
$$\vec{c} \cdot \hat{j} = y$$
 and $\vec{c} \cdot \hat{k} = z$

Given,
$$\overrightarrow{c} \cdot \hat{i} = \overrightarrow{c} \cdot \hat{j} = \overrightarrow{c} \cdot \hat{k}$$
 i.e., $x = y = z$.

Also,
$$|\vec{c}| = 100$$
, i.e., $x^2 + y^2 + z^2 = (100)^2 \Rightarrow 3x^2 = (100)^2 \Rightarrow x = \pm \frac{100}{\sqrt{3}}$
 $\therefore \vec{c} = \pm \frac{100}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$

24. (c) Here, $|\overrightarrow{a} \times \overrightarrow{b}|^2 + |\overrightarrow{a} \cdot \overrightarrow{b}|^2 = 144$

$$\Rightarrow (|\overrightarrow{a}| |\overrightarrow{b}| \sin \theta)^2 + (|\overrightarrow{a}| |\overrightarrow{b}|^2 \cos \theta)^2 = 144 \Rightarrow |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \sin^2 \theta + |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \cos^2 \theta = 144$$

$$\Rightarrow |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 = 144 \Rightarrow 4 \cdot |\overrightarrow{b}| = 12 \Rightarrow |\overrightarrow{b}| = 3.$$

25. (b) The number of vectors of unit length perpendicular or to vectors \vec{a} and \vec{b} is \vec{c} .

$$\therefore \vec{c} = \pm (\vec{a} \times \vec{b})$$

So, there will be two vectors of unit length perpendicular to vectors \overrightarrow{a} and \overrightarrow{b} .

26. (b) We have, BC = 1.5 BA

$$\Rightarrow \frac{BC}{BA} = 1.5 = \frac{3}{2} \Rightarrow \frac{\overrightarrow{c} - \overrightarrow{b}}{\overrightarrow{a} - \overrightarrow{b}} = \frac{3}{2}$$

$$\Rightarrow 2\overrightarrow{c} - 2\overrightarrow{b} = 3\overrightarrow{a} - 3\overrightarrow{b} \Rightarrow 2\overrightarrow{c} = 3\overrightarrow{a} - 3\overrightarrow{b} + 2\overrightarrow{b}$$

$$\Rightarrow 2\overrightarrow{c} = 3\overrightarrow{a} - \overrightarrow{b} \qquad \therefore \overrightarrow{c} = \frac{3\overrightarrow{a} - \overrightarrow{b}}{2}$$

27. (a) D.c's, l = m = n, $l^2 + m^2 + n^2 = 1 \Rightarrow l^2 + l^2 + l^2 = 1 \Rightarrow l = \pm \frac{1}{\sqrt{3}}$

$$\therefore \overrightarrow{r} = \pm \frac{1}{\sqrt{3}} \ \hat{i} \pm \frac{1}{\sqrt{3}} \hat{j} \pm \frac{1}{\sqrt{3}} \hat{k} \Rightarrow \overrightarrow{r} = \pm \frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$$

$$\Rightarrow \overrightarrow{r} = (\hat{r}) |\overrightarrow{r}| = \pm \frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k}) (2\sqrt{3}) \Rightarrow \overrightarrow{r} = \pm 2(\hat{i} + \hat{j} + \hat{k})$$

29. (c) Unit vector in the direction of $\vec{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{1^2 + (-2)^2 + 2^2}} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$

$$\therefore \text{ Vector of magnitude } 9 = \frac{9(\hat{i} - 2\hat{j} + 2\hat{k})}{3} = 3(\hat{i} - 2\hat{j} - 2\hat{k})$$

30. (d) Since \overrightarrow{a} and \overrightarrow{b} are orthogonal $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

$$\Rightarrow (2\hat{i} + \lambda \hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 0 \Rightarrow \lambda = \frac{-5}{2}$$

31. (d) Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{a}^2 = a_1^2 + a_2^2 + a_3^2$

$$\overrightarrow{a} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0 \end{vmatrix} = a_3 \hat{j} - a_2 \hat{k}$$

$$(\vec{a} \times \hat{i})^2 = (a_3 \hat{j} - a_2 \hat{k}) (a_3 \hat{j} - a_2 \hat{k}) = a_3^2 + a_2^2$$

Similarly,
$$(\overrightarrow{a} \times \hat{j})^2 = a_1^2 + a_3^2$$
 and $(\overrightarrow{a} \times \hat{k})^2 = a_1^2 + a_2^2$

$$\therefore (\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times \hat{k})^2 = 2(a_1^2 + a_2^2 + a_3^2) = 2\overrightarrow{a}^2.$$

33. (a) By definition of scalar triple product $\vec{a} \cdot (\vec{b} \times \vec{c})$ can be written as $[\vec{a} \ \vec{b} \ \vec{c}]$

$$\frac{\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})}{(\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}} + \frac{\overrightarrow{b} \cdot (\overrightarrow{a} \times \overrightarrow{c})}{\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})} = \frac{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}{[\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{b}]} + \frac{[\overrightarrow{b} \ \overrightarrow{a} \ \overrightarrow{c}]}{[\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{b}]} = \frac{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]} - \frac{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]} = 1 - 1 = 0$$

$$\therefore [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}] \text{ but } [\overrightarrow{b} \overrightarrow{a} \overrightarrow{c}] = -[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

34. (d) The position vector of points D, E, F are respectively.

$$\frac{\hat{i}+\hat{j}}{2} + \hat{k}$$
, $\hat{i} + \frac{\hat{k}+\hat{j}}{2}$ and $\frac{\hat{i}+\hat{k}}{2} + \hat{j}$

So, position vector of centre of $\Delta DEF = \frac{1}{3} \left[\frac{\hat{i} + \hat{j}}{2} + \hat{k} + \hat{i} \frac{\hat{k} + \hat{j}}{2} + \frac{\hat{i} + \hat{k}}{2} + \hat{j} \right] = \frac{2}{3} \left[\hat{i} + \hat{j} + \hat{k} \right]$

36. (a) According to question
$$a = -\hat{i} + \hat{j} + \hat{k}$$
 and $b = \hat{i} - \hat{j} + \hat{k}$

Then,
$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$

= $\hat{i}[1+1] - \hat{j}[-1-1] + \hat{k}[1-1] = 2(\hat{i}+\hat{j})$ and $|a \times b| = \sqrt{4+4} = 2\sqrt{2}$
 \therefore Required unit vector = $\pm \frac{2(\hat{i}+\hat{j})}{2\sqrt{2}} = \pm \frac{\hat{i}+\hat{j}}{\sqrt{2}}$

37. (c)
$$a.b = a \cdot c \Rightarrow a \cdot (b - c) = 0$$

 $\Rightarrow a = 0 \text{ or } b - c = 0 \text{ or } a \perp (b - c)$
 $\Rightarrow a = 0 \text{ or } b = c \text{ or } a \perp (b - c)$...(i)
Also $a \times b = a \times c \Rightarrow a \times (b - c) = 0$
 $\Rightarrow a = 0 \text{ or } b - c = 0 \text{ or } a \parallel (b - c)$
 $\Rightarrow a = 0 \text{ or } b = c \text{ or } a \parallel (b - c)$...(ii)
Observing to (i) and (ii) we find that $a = 0$ or $b = c$

$$\frac{(6\hat{i} + 2\hat{j} + 3\hat{k}) \times (3\hat{i} - 6\hat{j} - 2\hat{k})}{|(6\hat{i} + 2\hat{j} + 3\hat{k}) \times (3\hat{i} - 6\hat{j} - 2\hat{k})|} = \frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7}$$

40. (a)
$$\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 4\hat{i} - \hat{j} - 3\hat{i} + 2\hat{j} - \hat{k} = \hat{i} + \hat{j} - \hat{k}$$

$$\hat{r} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|} = \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{1^2 + 1^2 + (-1)^2}} = \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$

41. (b)
$$|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$$

$$\Rightarrow \sqrt{A^2 + B^2 + 2AB\cos\theta} = \sqrt{A^2 + B^2 - 2AB\cos\theta}$$

Squaring both the sides, we get

$$\overrightarrow{A}^2 + \overrightarrow{B}^2 + 2\overrightarrow{A}\overrightarrow{B}\cos\theta = \overrightarrow{A}^2 + \overrightarrow{B}^2 - 2\overrightarrow{A}\overrightarrow{B}\cos\theta$$

Or
$$4\overrightarrow{A}\overrightarrow{B}\cos\theta = 0$$
 or $\cos\theta = 0$ (since the scalar or dot product is zero).

Therefore, angle between \overrightarrow{A} to \overrightarrow{B} is 90°.

42. (d) If given vectors are coplanar, then there exists two scalar quantities
$$x$$
 and y such that

$$2\hat{i} - \hat{j} + \hat{k} = x(\hat{i} + 2\hat{j} - 3\hat{k}) + y(3\hat{i} + a\hat{j} + 5\hat{k})$$

Comparing coefficient of \hat{i} , \hat{j} and \hat{k} on both sides

We get,
$$x + 3y = 2$$
 ...(i)
 $2x + ay = -1$...(ii)
and $-3x + 5y = 1$...(ii)

and
$$-3x + 5y = 1$$
 ...
Solving (i) and (iii) equations, we get $x = \frac{1}{2}$, $y = \frac{1}{2}$

Since, the vectors are coplanar, therefore, these values of x and y will satisfy the equation 2x + ay = -1

$$\therefore \left(\frac{1}{2}\right) + a\left(\frac{1}{2}\right) = -1 \implies a = -4$$

43. (a)
$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 676$$

$$(|\overrightarrow{a}| \cdot |\overrightarrow{b}| \sin \theta \hat{n})^2 + (|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta)^2 = 676$$

$$\Rightarrow a^2b^2\sin^2\theta + a^2b^2\cos^2\theta = 676 \ [(\hat{n})^2 = 1] \Rightarrow a^2b^2(\sin^2\theta + \cos^2\theta) = 676 \Rightarrow a^2 = \frac{676}{b^2} = \frac{676}{4}$$

$$\Rightarrow |\overrightarrow{a}| = \sqrt{\frac{676}{4}} \Rightarrow |\overrightarrow{a}| = \frac{26}{2} \Rightarrow |\overrightarrow{a}| = 13$$

- **44.** (d) If P and Q be the points represented by the coordinates (3, 1, 14) and (-2, -1, -6) respectively then, $\overrightarrow{PQ} = p.v.$ of Q p.v. of $P = (-2\hat{i} \hat{j} 6\hat{k}) (3\hat{i} + \hat{j} + 14\hat{k}) = -5\hat{i} 2\hat{j} 20\hat{k}$ and $\overrightarrow{OQ} = -\overrightarrow{PQ} = 5\hat{i} + 2\hat{j} + 20\hat{k}$
- **45.** (d) The given expression $= \{\{a \times c + b \times a + b \times c\} \times (b \times c)\} \cdot (b + c) = \{(a \times c) \times (b \times c) + (b \times a) \times (b \times c)\} \cdot (b + c)$ $= [(a \cdot (b \times c) c (c \cdot (b \times c))a + (b \cdot (b \times c))a (a(b \times c)b)](b + c)$ $= [(a \cdot (b \times c))(c b) \cdot (b + c)] = (a \cdot (b \times c)) = [|c|^2 |b|^2] = 0 [|b| = |c| = 1]$
- 46. (d) The position vector of points D, E, F are respectively.

$$\frac{\hat{i} + \hat{j}}{2} + \hat{k}, \ \hat{i} + \frac{\hat{k} + \hat{j}}{2} \text{ and } \frac{\hat{i} + \hat{k}}{2} + \hat{j}$$

So, position vector of centre of ΔDEF

$$= \frac{1}{3} \left[\frac{\hat{i} + \hat{j}}{2} + \hat{k} + \hat{i} + \frac{\hat{k} + \hat{j}}{2} + \frac{\hat{i} + \hat{k}}{2} + \right] \hat{j} = \frac{2}{3} \left[\hat{i} + \hat{j} + \hat{k} \right]$$

47. (c) Vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda \overrightarrow{b} + 4\overrightarrow{c}$, and $(2\lambda - 1)\overrightarrow{c}$ are coplanar if $\begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & 2\lambda - 1 \end{vmatrix} = 0$ $\Rightarrow \lambda(2\lambda - 1) = 0 \Rightarrow \lambda = 0 \text{ or } \frac{1}{2}$

 \therefore Forces are noncoplanar for all λ , except $\lambda = 0, \frac{1}{2}$

- **49.** (a) $\cos \theta = \frac{a \cdot b}{|a||b|} = \frac{3+4+3}{\sqrt{14}\sqrt{14}} = \frac{5}{7}$
- **50.** (d) We have, $\vec{A} = \hat{i} + \hat{j} 2\hat{k}$, $\vec{B} = -\hat{i} + 2\hat{j} \hat{k}$

We know that $\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$ or $\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{AB}$

Now,
$$A = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{6}$$
, and $B = \sqrt{(-1)^2 + 2^2 + (-1)^2} = \sqrt{6}$
 $\overrightarrow{A} \cdot \overrightarrow{B} = (\hat{i} + \hat{j} - 2\hat{k}) \cdot (-\hat{i} + 2\hat{j} - \hat{k}) = -1 + 2 + 3 = 3$
 $\Rightarrow \cos \theta = \frac{3}{\sqrt{6} \times \sqrt{6}} = \frac{3}{6} = \frac{1}{2} \text{ or } \theta = 60^\circ$

51. (a) Let $\vec{A} = (\hat{i} - 2\hat{j} + \hat{k})$ and $\vec{B} = (2\hat{i} + \hat{j} - 3\hat{k})$

Now,
$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 2 & 1 & -3 \end{vmatrix}$$
 and $|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{25 + 25 + 25} = 5\sqrt{3}$

We know a unit vector along \overrightarrow{a} is given as $\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$

$$\therefore \text{ Unit vector along } |\overrightarrow{A} \times \overrightarrow{B}| = \frac{\overrightarrow{A} \times \overrightarrow{B}}{|\overrightarrow{A} \times \overrightarrow{B}|} = \frac{5(\hat{i} + \hat{j} + \hat{k})}{5\sqrt{3}} = \left(\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}\right)$$

Thus, required vector of magnitude 5 is $\frac{5\sqrt{3}}{3}$ $(\hat{i} + \hat{j} + \hat{k})$

- **52.** (d) We have, $\hat{i} \times (\hat{j} \times \hat{k}) + \hat{j} \times (\hat{k} \times \hat{i}) + \hat{k} \times (\hat{i} \times \hat{j}) = \hat{i} \times \hat{i} + \hat{j} \times \hat{j} + \hat{k} \times \hat{k} = 0 + 0 + 0 = 0$
- **54.** (a) Any vector r in the plane of b and c is r = b + tc or $r = (1 + t) \hat{i} + (2 + t) \hat{j} (1 + 2t)\hat{k}$...(i)

Projection of
$$r$$
 on a is $\sqrt{\frac{2}{3}} \Rightarrow \frac{r \cdot a}{|a|} = \sqrt{\frac{2}{3}}$ or $\frac{2(1+t)-(2+t)-(1+2t)}{\sqrt{6}} = \pm \sqrt{\frac{2}{3}}$

$$\therefore$$
 $-t-1=\pm 2 \Rightarrow t=-3, 1$

Putting in (i) we get $r = -2\hat{i} - \hat{j} + 5\hat{k}$ or $r = 2\hat{i} + 3\hat{j} - 3\hat{k}$

55. (c) We have,
$$r = a_1 + \lambda b_1$$
, $r = a_2 + \mu b_2$

Where
$$a_1 = 3\hat{i} - 2\hat{j} - 2\hat{k}$$
, $b_1 = \hat{i}$

$$a_2 = \hat{i} - \hat{j} + 2\hat{k}, b_2 = \hat{j}$$

$$|b_1 \times b_2| = |\hat{i} \times \hat{j}| = (\hat{k}) = 1$$

Now,
$$[(a_2 - a_1)b_1 \times b_2] = (a_2 - a_1) \cdot (b_1 \times b_2) = (-2\hat{i} + \hat{j} + 4\hat{k})(\hat{k}) = 4$$

$$\therefore \text{ Shortest distance} = \frac{(a_2 - a_1)(b_1 \times b_2)}{|b_1 \times b_2|} = \frac{4}{1} = 4.$$

57. (a)
$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -3 \\ 2 & 1 & -1 \end{vmatrix} = 5\hat{i} - 5\hat{j} + 5\hat{k}$$

Now,
$$(\overrightarrow{A} \times \overrightarrow{B}) \times \overrightarrow{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -5 & 5 \\ 1 & 3 & -2 \end{vmatrix} = 5(-\hat{i} + 3\hat{j} + 4\hat{k})$$

58. (d)
$$a \cdot [(b+c) \times (a+b+c)] = a \cdot (b \times a + b \times b + b \times c) + a \cdot (c \times a + c \times b + c \times c)$$

= $[aba] + [abb] + [abc] + [aca] + [acb] + [acc]$
= $0 + 0 + [abc] + 0 - [abc] + 0 = 0$

59. (c) Let
$$a = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\Rightarrow \hat{i} \times (a \times \hat{i}) + \hat{j} \times (a \times \hat{j}) + \hat{k} \times (a \times \hat{k}) = (\hat{i} \cdot \hat{i}) \ a - \hat{i}(a \cdot \hat{i}) + (\hat{j} \cdot \hat{j}) a - \hat{j}(a \cdot \hat{j}) + (\hat{k} \cdot \hat{k}) a - \hat{k}(a \cdot \hat{k})$$
$$= 3a - a = 2a.$$

60. (a)
$$[a-b \ b-c \ c-a] = \{(a-b) \times (b-c)\} \cdot (c-a)$$

$$= (a \times b - a \times c - b \times b + b \times c) (c - a)$$

$$= (a \times ab + ca \times a + b \times c) (c - a)$$

$$= (a \times b) \cdot c - (a \times b) \cdot a + (c \times a) \cdot c - (c \times a) \cdot a$$

$$= (a \times b) \cdot c - (a \times b) \cdot a + (c \times a) \cdot c - (c \times a) \cdot a + (b \times c) \cdot c - (b \times c) \cdot a$$

13

$$= [abc] - [aba] + [cac] - [caa] + [bcc] - [bca] = 0$$

61. (c)
$$a \times (b \times c) = \frac{b+c}{\sqrt{2}} \implies (a \cdot c)b - (a \cdot b)c = \frac{b+c}{\sqrt{2}}$$

$$\Rightarrow \left[(a \cdot c) - \frac{1}{\sqrt{2}} \right] b - \left[(a \cdot b) + \frac{1}{\sqrt{2}} \right] c = 0$$

$$\Rightarrow a \cdot c = \frac{1}{\sqrt{2}}, \ a \cdot b = \frac{-1}{\sqrt{2}} \Rightarrow |a||c| \cos \theta = \frac{1}{\sqrt{2}}, \ |a||c| \cos \phi = \frac{-1}{\sqrt{2}}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}, \cos \phi = \frac{-1}{\sqrt{2}}, \theta = \frac{\pi}{4}, \phi = \frac{3\pi}{4}$$

62. (a) We have, $P(\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c})$, $Q(2\overrightarrow{a} + 3\overrightarrow{b})$ and $R(\overrightarrow{b} + \overrightarrow{c})$ are collinear.

$$\therefore \overrightarrow{PQ} = \lambda \overrightarrow{QR}$$
 for some scalar λ .

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = \lambda(-2\overrightarrow{a} - 2\overrightarrow{b} + t\overrightarrow{c}) \Rightarrow (2\lambda + 1)\overrightarrow{a} + a(1 + 2\lambda)\overrightarrow{b} - (t\lambda + 1)\overrightarrow{c} = 0$$

$$\Rightarrow$$
 $2\lambda + 1 = 0$, $2\lambda + 1 = 0$, $t\lambda + 1 = 0 \Rightarrow t = 2$

- 63. (a) Let θ be the angle between \overrightarrow{a} and \overrightarrow{b} . We have, $|\overrightarrow{a} - \overrightarrow{b}| = 1 \Rightarrow |\overrightarrow{a} - \overrightarrow{b}|^2 = 1$ $\Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2(\overrightarrow{a} \cdot \overrightarrow{b}) = 1 \Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2|\overrightarrow{a}||\overrightarrow{b}| \cos \theta = 1 \Rightarrow 1 + 1 - 2\cos \theta = 1$ $\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \cos \theta = \frac{\pi}{3}$
- **64.** (b) Let θ be the angle between unit vector \overrightarrow{a} and \overrightarrow{b} . Then, $|\overrightarrow{a} - \overrightarrow{b}| = 1 \Rightarrow |\overrightarrow{a} - \overrightarrow{b}|^2 = 1$ $\Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2(\overrightarrow{a} \cdot \overrightarrow{b}) = 1 \Rightarrow 1 + 1 - 2|\overrightarrow{a}||\overrightarrow{b}||\cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$
- 65. (c) Let θ be the angle between \overrightarrow{a} and \overrightarrow{b} . Then, $\tan \frac{\theta}{2} = \frac{|\overrightarrow{a} \overrightarrow{b}|}{|\overrightarrow{a} + \overrightarrow{b}|} \Rightarrow \tan \frac{\theta}{2} = \sqrt{3} \Rightarrow \theta = 120^{\circ}$ $\therefore \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = \cos 120^{\circ} = \frac{-1}{2}$ Now, $|3\overrightarrow{a} + 2\overrightarrow{b}|^2 = 9|\overrightarrow{a}|^2 + 4|\overrightarrow{b}|^2 + 12(\overrightarrow{a} \cdot \overrightarrow{b}) = 9 + 4 + 12 \times \frac{-1}{2} = 7$ $\Rightarrow |3\overrightarrow{a} + 2\overrightarrow{b}| = \sqrt{7}.$
- 67. (d) We have, $\overrightarrow{F} = 7\hat{i} + 2\hat{j} 4\hat{k}$ and $\overrightarrow{d} = 4\hat{i} + 2\hat{j} 2\hat{k}$ \therefore Work done = $\overrightarrow{F} \cdot \overrightarrow{d} = (28 + 4 + 8)$ units = 40 units.
- **68.** (c) We have, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} = 5(3\hat{i} 2\hat{j} + 6\hat{k})$

$$|\vec{a} \times \vec{b}| = 5\sqrt{9+4+36} = 35$$

Hence, required unit vector \hat{n} is

$$\hat{n} = \frac{5}{35} (3 \hat{i} - 2 \hat{j} + 6 \hat{k}) = \frac{1}{7} (3 \hat{i} - 2 \hat{j} + 6 \hat{k}).$$

- 70. (b) We have, $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \Rightarrow \overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{c} \times \overrightarrow{b})$ $\Rightarrow (\overrightarrow{a} + \overrightarrow{c}) \times \overrightarrow{b} = 0 \Rightarrow \overrightarrow{a} + \overrightarrow{c}$ is parallel to \overrightarrow{b} . $\Rightarrow \overrightarrow{a} + \overrightarrow{c} = \lambda \overrightarrow{b}$ for some scalar $\lambda \Rightarrow \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{c}) = \overrightarrow{c} \times \lambda \overrightarrow{b}$ $\Rightarrow \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{c} = \lambda(\overrightarrow{c} \times \overrightarrow{b}) \Rightarrow \overrightarrow{c} \times \overrightarrow{a} = -\lambda (\overrightarrow{b} \times \overrightarrow{c})$ $\Rightarrow (\overrightarrow{b} \times \overrightarrow{c}) = -\lambda(\overrightarrow{b} \times \overrightarrow{c}) \Rightarrow \lambda = -1$ $\therefore \overrightarrow{a} + \overrightarrow{c} = \lambda \overrightarrow{b} \Rightarrow \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$
- 71. (c) Given vectors will be coplanar, if

$$\begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0 \Rightarrow \lambda^6 - 3\lambda^2 - 2 = 0$$

$$\Rightarrow$$
 $(1 + \lambda^2)^2 (\lambda^2 - 2) = 0 \Rightarrow \lambda = \pm \sqrt{2}$

72. (c) We have, $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} - \hat{k}$ $\Rightarrow \overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (\hat{j} - \hat{k}) \Rightarrow (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{a}) \overrightarrow{b} = (\hat{i} + \hat{j} - \hat{k}) \times (\hat{j} - \hat{k})$ $\Rightarrow (\hat{i} + \hat{j} + \hat{k}) - 3\overrightarrow{b} = -2\hat{i} + \hat{j} + \hat{k} \Rightarrow 3\overrightarrow{b} = 3\hat{i} \Rightarrow \overrightarrow{b} = \hat{i}.$