Chapter - 5 CONTINUITY AND DIFFERENTIABILITY

STUDY NOTES

• Continuity of a function:

A function f(x) is said to be continuous at x = a if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

i.e., LHL = RHL = Value of function at 'a', i.e., $\lim_{x \to a} f(x) = f(a)$

If f(x) is not continuous at x = a, we say that f(x) is discontinuous at x = a.

- f(x) is not continuous at x = a in any of following case :
 - (i) $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exists but are not equal.
 - (ii) $\lim_{x\to a^{-}} f(x)$ and $\lim_{x\to a^{+}} f(x)$ exists and are equal but not equal to f(a).
 - (iii) f(a) is not defined.
 - (iv) At least one of the limits does not exist.

Continuity of a function in an interval.

(a) Continuity in an open interval:

A function is said to be continuous in an open interval (a, b) if it is continuous at each point of (a, b).

(b) Continuity in closed Interval

A function is said to be continuous in a closed interval [a, b] if:

- (i) f(x) is continuous from right at x = a, i.e., $\lim_{x \to a^+} f(x) = f(a)$
- (ii) f(x) is continuous from left at x = b, i.e., $\lim_{x \to b^{-}} f(x) = f(b)$
- (iii) f(x) is continuous at each point of interval (a, b)

• Geometrical meaning of Continuity

- (i) The function 'f' will be continuous at x = a if there is no break in the graph of the function y = f(x) at the point (a, f(a)).
- (ii) The function f(x) will be continuous in the closed interval [a, b] if the graph of y = f(x) is an unbroken line from the point (a, f(a)) to (b, f(b)).

• Continuity of Composite Function

If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof) x = g(f(x)) is continuous at point x = a.

Differentiability

Let y = f(x) is continuous in (a, b). Then the derivative or differential of f(x) at $x \in (a, b)$ denoted by $\frac{dy}{dx}$ or f'(x) and is defined as

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Right and Derivative

Right hand derivative f(x) at x = a is denoted by Rf'(a) or $f'(a^+)$ and defined as

$$Rf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}, h > 0$$

Left and Derivative

Left hand derivative of f(x) at x = a is denoted by Lf'(a) or $f'(a^{-})$ and is defined as

$$Lf'(a) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}, h > 0$$

Standard Results on Differentiation:

(a)
$$\frac{d}{dx}(c) = 0$$
, c is constant

(b)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(c)
$$\frac{d}{dx}(\sin x) = \cos x$$

(d)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(e)
$$\frac{d}{dx}$$
 (tan x) = $\sec^2 x$

(f)
$$\frac{d}{dx} (\cot x) = -\csc^2 x$$

(g)
$$\frac{d}{dx}$$
 (cosec x) = $-\csc x \cot x$

(h)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
 (i) $\frac{d}{dx}(a^x) = a^2 \log_e^a$

(i)
$$\frac{d}{dx}$$
 $(a^x) = a^2 \log_e^a$

(j)
$$\frac{d}{dx}(e^x) = e^x$$

(k)
$$\frac{d}{dx} (\log x) = \frac{1}{x} (x > 0)$$
 (l) $\frac{d}{dx} |x| = \frac{x}{|x|} \text{ or } \frac{|x|}{x}$

(1)
$$\frac{d}{dx}|x| = \frac{x}{|x|}$$
 or $\frac{|x|}{x}$

(m)
$$\frac{d}{dx} \sqrt{x} = \frac{2}{\sqrt{x}}$$

(n)
$$\frac{d}{dx} x^x = x^x (1 + \log x)$$

(o)
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

(p)
$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

(q)
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$

(r)
$$\frac{d}{dx} (\cot^{-1} x) = -\frac{1}{1+x^2}$$

(s)
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}} |x| >$$

(s)
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}} |x| > |$$
 (t) $\frac{d}{dx} (\csc^{-1} x) = -\frac{1}{|x| \sqrt{x^2 - 1}} |x| > |$

Chain rule: If y is a function of z and 'z' is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$$

Algebraic functions of Differentiation

(a)
$$\frac{d}{dx} [kf(x)] = k \frac{d}{dx} f(x)$$

(b)
$$\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$$

(c)
$$\frac{d}{dx} [f(x).g(x)] = g(x)\frac{d}{dx} f(x) + f(x)\frac{d}{dx} g(x)$$

(d)
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

(e)
$$\frac{d}{dx} [f(x)]^{g(x)} = [f(x)^{g(x)} \frac{d}{dx} g(x).\log f(x)$$

(f)
$$\frac{d}{dx} \frac{1}{f(x)} = -\frac{1}{f(x)^2} \cdot \frac{d}{dx} f(x). f(x) \neq 0$$

Some Important Results

(a)
$$a^2 + x^2 \longrightarrow x = a \tan \theta$$
 (b) $a^2 - x^2 \longrightarrow x = a \sin \theta$ or $a \cos \theta$

(c)
$$x^2 - a^2 \longrightarrow x = a \sec \theta$$
 or $x = a \csc \theta$

(d)
$$\frac{a+x}{a-x} \longrightarrow x = a \tan \theta$$

(e)
$$\sqrt{\frac{a+x}{a-x}} \longrightarrow x = a\cos\theta$$
 (f) $\frac{2x}{1+x^2} \longrightarrow x = \tan\theta$

QUESTION BANK

MULTIPLE CHOICE QUESTIONS

1.	The points of discontinuity o	of $y = g(u) = \frac{1}{u^2 + u - 2}$ is	; where $u = \frac{1}{x-1}$.	
	(a) Only $\frac{1}{2}$	(b) only $-\frac{1}{2}$	(c) $\frac{1}{2}$, $-\frac{1}{2}$	(d) $1, \frac{1}{2}, 2$
2.	If $f(x) = \frac{1}{(x-1)(x-2)}$ and	$g(x) = \frac{1}{x^2}$, then points of d	is continuity of $f(g(x))$ are	
	(a) $\left\{-1, \ 0, \ 1, \ \frac{1}{\sqrt{2}}\right\}$	(b) $\left\{-\frac{1}{\sqrt{2}}, -1, 0, 1, \frac{1}{\sqrt{2}}\right\}$	(c) {0, 1}	(d) $\left\{0, 1, \frac{1}{\sqrt{2}}\right\}$
3.	If $f(x) = (1 + x)(2 + x^2)^{1/2}$ (3)	$3 + x^3)^{1/3}$, then $f'(-1)$ is:		
	(a) $\sqrt{3} \ 2^{1/3}$	(b) $\sqrt{2} \ 3^{1/3}$	(c) 0	(d) does not exists
4.	Let $f: \mathbb{R} \to \mathbb{R}$ be a different $\lim_{x \to 0} \frac{1}{x} \sum_{n=1}^{\infty} (-1)^n f\left(\frac{x}{n}\right) =$	tiable function at $x = 0$ satisfies	sfying $f(0) = 0$ and $f'(0) =$	1, then the value of
	(a) 0	(b) -In2	(c) 1	(d) e
5.	If $f(x)$ is continuous in [0, 2]	and $f(0) = f(2)$ then the e	equation $f(x) = f(x + 1)$ has	
	(a) non real root in [0, 2]		(b) at least one real root in	n [0, 1]
	(c) at least one real root in	n [0, -2]	(d) at least one real root in	n [1, 2]
6.	Let $f(x) = \max(\cos x, x, 2x)$	-1), where $x \ge 0$, then the	e number of points of non-d	ifferentiability of $f(x)$
	(a) only 1	(b) two	(c) three	(d) four
7.	If the function $g(x) = \begin{cases} k\sqrt{x} \\ mx \end{cases}$		and it was a lo necount	
	is differentiable, then the va	lue of $k + m$ is:		
	(a) $\frac{16}{5}$	(b) $\frac{10}{3}$	(c) 4	(d) 2
8.	If $y = \sec(\tan^{-1} x)$, then $\frac{dy}{dx}$:	at $x = 1$ is equal to:		
	(a) $\frac{1}{2}$		(c) $\sqrt{2}$	(d) $\frac{1}{\sqrt{2}}$
9.	If a function $f(x)$ is different	tiable at $x = a$ then $\lim_{x \to a} \frac{x^2}{1}$	$\frac{2^2 f(a) - a^2 f(x)}{x - a}$ is:	
	(a) $2af(a) - a^2 f'(a)$	(b) $2af(a) + a^2 f'(a)$	(c) $-a^2f'(a)$	(d) $af(a) - a^2 f'(a)$
10.	Let $f: (-1, 1) \Rightarrow R$ be a diff	fferentiable function with $f($	f'(0) = -1 and $f'(0) = 1$.	
	Let $g(x) = (f(2f(x)))$			
	Then $g'(0) =$			
	(a) -4	(b) 0	(c) -2	(d) 4
11.	Let y be an implicit function			
	(a) -1	(b) log 2	(c) 1	(d) - log 2

is:

12.	Let $f(x) = \begin{cases} (x-1)\sin\left(\frac{1}{x-1}\right), & \text{if } x \neq 1\\ 0, & \text{if } x = 1 \end{cases}$
	0, if x = 1
	Then which one of the following is true?
	(a) f is neither differentiable at $x = 0$ nor at $x = 1$
	(c) f is differentiable at $x = 0$ but not at $x = 1$
13.	The set of points where $f(x) = \frac{x}{1 + x }$ is differentiable is
	(a) $(-\infty, 0) \cup (0, \infty)$ (b) $(-\infty, -1) \cup (-1, \infty)$
14	If $x^m y^n = (x + y)^{m+n}$ then $\frac{dy}{dy}$ is:

(b) f is differentiable at x = 0 and x = 1

(d) f is differentiable at x = 1 but not x = 0

(d) $(0, \infty)$

 $(-1) \cup (-1, \infty)$ (c) $(-\infty, \infty)$

(a) $\frac{y}{r}$ (c) $\frac{x+y}{xy}$ (d) $\frac{x}{y}$

15. Let f(x) is differentiable at x = 1 and $\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, then f'(1) equals

(a) 3

(b) 4

(c) 5 (d) 6

16. Let $f(x) = \frac{1 - \tan x}{4x - \pi}, \ x \neq \frac{\pi}{4}, \ x \in \left[0, \frac{\pi}{2}\right].$

If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$ then $f\left(\frac{\pi}{4}\right)$ is:

(c) $-\frac{1}{2}$ (a) 1 17. If f is a real valued differentiable function satisfying $|f(x) - f(y)| \le (x - y)^2$, $x, y \in R$ and

f(0) = 0, then f(1) equals :

(a) -1(b) 0 (c) 2(d) 1

18. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$, for $x \in [1, 6]$ then : (a) $f(6) \ge 8$ (b) f(6) < 8(c) f(6) < 5(d) f(6) = 5

19. If $x = e^{y + e^y + \dots + \infty}$, x > 0, then $\frac{dy}{dx}$ is :

(c) $\frac{1-x}{x}$ (d) $\frac{x+1}{x}$ (a) $\frac{x}{1+x}$

20. If $f(x) = \begin{cases} xe^{-\left|\frac{1}{|x|} + \frac{1}{x}\right|}, & x \neq 0; \text{ then } f(x) \text{ is } : \\ 0, & x \neq 0 \end{cases}$

(a) continuous as well as differentiable for all x. (b) continuous for all x but not differentiable at x = 0.

(c) Neither differentiable nor continuous at x = 0(d) discontinuous everywhere

21. If $f(x) = \frac{2 - \sqrt{x + 4}}{\sin 2x}$, $(x \ne 0)$ is continuous function at x = 0, then f(0) is equal to: (b) $-\frac{1}{4}$ (d) $-\frac{1}{8}$ (a) $\frac{1}{4}$ (c) $\frac{1}{8}$

22. The value of f(2), if the given function $f(x) = \frac{x(x-2)}{x^2-4}$, $x \ne 2$ is continuous at x = 2 is :

(c) 1 (d) 2(a) 0

	$\int 3x - 4$	$0 \le x \le 2$		629	•
23.	If $f(x) = \begin{cases} 2x + \lambda \end{cases}$	$2 < x \le 3$ is continuous at	x = 2, then what is the val	ue of \(\lambda?\)	
	(a) 1	(b) -1	x = 2, then what is the val (c) 2	(d) -2	
24.	The value of $f(0)$ is	if the function $f(x) = \frac{2x - 2x}{2x + 2x}$	$\frac{\sin^{-1} x}{\tan^{-1} x} (x \neq 0)$ is continuou	as at each point of its domain i	s:
	(a) 2	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) $-\frac{1}{3}$	
25.	The value of b is,	if the function			
	$f(x) = \begin{cases} 5x - 4\\ 4x^2 + 3bx \end{cases}$	if $0 < x \le 1$ is continuous if $1 < x < 2$	ous at every point of its dor	nain	
	(a) -1	(b) 0	(c) 1	(d) 2	
		$\begin{cases} 2x+1 & x>1 \end{cases}$			
26.	The value of k if	$f(x) = \begin{cases} k & x = 1 \text{ is c} \end{cases}$	ontinuous at $x = 1$ is :		
20.		$f(x) = \begin{cases} 2x+1 & x > 1 \\ k & x = 1 \text{ is c} \\ 5x-2 & x < 1 \end{cases}$	i de (1997) - mil has i		
	(a) 1	(b) 2	(c) 3	(d) 4	
			$\frac{1-\sin x}{2}$	$x \neq \frac{\pi}{2}$	
27.	Which of the follo	wing the value of λ if the	function $f(x) = \begin{cases} \pi - 2x \end{cases}$	2 π	
	Continuous at $x =$	$\frac{\pi}{2}$?	function $f(x) = \begin{cases} \frac{1 - \sin x}{\pi - 2x} \\ \lambda \end{cases}$	$x = \frac{\pi}{2}$	
	(a) -1	(b) 1	(c) 0	(d) 2	
28.	Which of the follo	wing is correct if the funct	ion?		
	$\int dx + 1$	$r < \frac{\pi}{}$			
	$f(x) = \begin{cases} ax + 1 \end{cases}$	$\frac{2}{\pi}$ is continuous at x	$=\frac{\pi}{2}$?		
	$\sin x + b$	$x > \frac{\pi}{2}$	(0)	0-	
	(a) $a = 1, b = 0$	(b) $a = \frac{n\pi}{2} + 1$	$c = \frac{\pi}{2}?$ $(c) b = a\left(-\frac{\pi}{2}\right)$	(d) $b = \frac{9\pi}{2}$	
29.	Consider the funct	$f(x) = \begin{cases} ax^2 + b \\ bx^2 + ax + 4 \end{cases}$	$x < -1$ is continuous every $x \ge -1$	where, then, the values of a and (d) 0, 2	d <i>b</i> are:
	(a) 3, 2	(b) 2, 3	(c) 1, 2	(d) 0, 2	
30.	$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, \\ 0 \end{cases}$	$x \neq 0$ is	(6) ÷		

32. A function is defined as $f(x) = x^a \cos\left(\frac{1}{x}\right)$, $x \ne 0$, f(0) = 0. Which of the following must be true if the given function is continuous at x = 0?

(a) a = 0(b) a > 0(c) a < 0(d) $a \ge 0$

(b) continuous at x = 0

(d) discontinuous at every point

(d) e^{2}

(a) a = 0 (b) a > 0 (c) a < 0 (d) $a \ge 0$

33. f(x) is a real valued function, defined as $f(x) = \sin(|x|)$, which one of the following is correct? (a) f is not differentiable only at 0. (b) f is differentiable at 0 only.

31. What is the value of f(0), if $f(x) = (x + 1)^{\cot x}$ is continuous at x = 0?

(a) continuous at $x = \frac{\pi}{2}$

(a) 1

(c) discontinuous at x = 1

(c) f is differentiable everywhere. (d) f is non-differentiable at many points.

34.	f(x) is a real v	alued function	such that $f(x)$	$(x) = -x \text{ if } x \ge 0$	0 and $f(x) =$	$-x^2$ if $(x) <$	0. Then	which	of the	following
	is correct?									

- (a) f(x) is continuous at every $x \in \mathbb{R}$.
- (b) f(x) is continuous at x = 0 only..
- (c) f(x) is discontinuous at x = 0 only.
- (d) f(x) is discontinuous at every $x \in \mathbb{R}$.

35. Which of the following statement is correct for the function
$$f(x) = |x| + x^2$$
?

(a) f(x) is not continuous at x = 0.

- (b) f(x) is differentiable at x = 0.
- (c) f(x) is continuous but not differentiable at x = 0. (d) f(x) is discontinuous at x = 0.

36. F(x) is defined as the product of two real functions
$$f_1(x) = x$$
, $x \in \mathbb{R}$ and $f_2(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ as $F(x) = \begin{cases} f_1(x).f_2(x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Then which of the following statement is correct?

(a) F(x) is continuous on R.

(b) $f_1(x)$ and $f_2(x)$ are continuous on R.

(c) F(x) is not continuous on R.

(d) $f_1(x)$ and $f_2(x)$ are differentiable on R.

37.
$$f: R \to R$$
 be a continuous function defined by $f(x) = \frac{1}{e^x + 2e^{-x}}$. Then which of the following statement is correct?

(a) $f(c) = \frac{1}{3}$, for some $c \in \mathbb{R}$.

(b) $0 < f(x) \le \frac{1}{2\sqrt{2}}$ for all $x \in \mathbb{R}$.

(c) f(x) is differentiable at x = 0

(d) All of these

38. The function
$$f(x) = 1 + |\sin x|$$
 is :

(a) continuous no where

(b) continuous every where.

(c) differentiable at x = 0 only.

(d) not differentiable at infinite number of points.

39. For the function
$$f(x) = \begin{cases} |x-3| & x \ge 0 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$$
; which one of the following is incorrect?

- (a) continuous at x = 1 (b) differentiable at x = 1 (c) continuous at x = 3 (d) differentiable at x = 3

40. If
$$f(x) = \min\{1, x^2, x^3\}$$
, then

(a) f(x) is continuous $\forall x > R$

- (b) f'(x) > 0, $\forall x > 1$
- (c) f(x) is differentiable but continuous $\forall x \in \mathbb{R}$
- (d) f(x) is not differentiable for two values of x.

41. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $f(x+y) = f(x) + f(y) \ \forall x, y \in \mathbb{R}$. If f(x) is differentiable at x = 0, then :

- (a) f(x) is differentiable only in a finite interval containing zero.
- (b) f'(x) is continuous $\forall x > R$
- (c) f(x) is constant $\forall x > R$
- (d) f(x) is differentiable except at finitely many points.

42. If
$$f(x) = |x - 3|$$
, then

(a) $\lim_{x \to 0} f(x) \neq 0$

(b) $\lim_{x \to 3^{-}} f(x) \neq 0$

(c) $\lim_{x \to 3^{+}} f(x) \neq \lim_{x \to 3^{-}} f(x)$

(d) f(x) is continuous at x = 3

- 53. If $f(x) = \begin{cases} \frac{x^4 16}{x 2}, & \text{when } x \neq 2 \\ 16, & \text{when } x = 2 \end{cases}$ Then,
 - (a) f(x) is continuous at x = 2

(b) f(x) is discontinuous at x = 2

(c) $\lim_{x \to 2} f(x) = 16$

- 54. If $f(x) = \begin{cases} \frac{x^2 + 3x 10}{x^2 + 2x 15}, & \text{when } x \neq -5 \\ a, & \text{when } x = -5 \end{cases}$; continuous at x = -5, then what is the value of a?

 (a) $\frac{3}{2}$ (b) $\frac{7}{8}$ (c) $\frac{8}{7}$ (d) $\frac{2}{3}$ 55. The value of m, if $f(x) = \begin{cases} x + m & x < 3 \\ 4 & x = 3 \\ 3x 5 & x > 3 \end{cases}$ (a) 1

 (b) 4

 (c) 3

 (d) -1

- - (a) 1

(c) 3

(d) -1

- $\mathbf{56.} \quad \text{If } f(x) = \begin{cases} \frac{\sin[x]}{[x]+1} & \text{for } x > 0 \\ \frac{\cos\frac{\pi}{2}[x]}{[x]} & \text{for } x < 0 \text{, where } [x] \text{ denotes greatest integer function. The value of } k, \text{ if the given function} \end{cases}$

is continuous at x = 0 is :

- 57. If $f(x) = \frac{1 \cos 4x}{8x^2}$, where $x \ne 0$ and f(x) = k where x = 0 is a continuous function at x = 0, then the value of k will be:

- $(d) \pm 1$
- (a) 0 (b) 1 (c) -1 **58.** If $f(x) = \begin{cases} \frac{xe^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then which of the following is true?
 - (a) f is continuous and differentiable at every point
- (b) f is continuous at every point but is not differentiable

(c) f is differentiable at every point

(d) f is differentiable only at the origin

- **59.** If f(x) = |x 3|, then f is.
 - (a) discontinuous at x = 2

(b) not differentiable at x = 2

(c) differentiable at x = 3

- (d) continuous but not differentiable at x = 3
- **60.** Let $h(x) = \min\{x, x^2\}$, for every real number of x. Then
 - (a) h is continuous for all x.

(b) h is differentiable for all x.

(c) h'(x) = 1 for all x > 1

- (d) h is not differentiable at two values of x.
- **61.** The function $f(x) = \begin{cases} x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } 1 < x \le 2 \end{cases}$ is :
 - (a) continuous at all x, $0 \le x \le 2$ and differentiable at all x, except x = 1 in the interval [0, 2]
 - (b) continuous and differentiable at all x in [0, 2]

64.	The function $y = \sin x $ is continuous for any x but it is	not differentiate at				
	(a) $x = 0$ only					
	(c) $x = k\pi$ (k is an integer) only	(d) $x = 0$ and $x = k\pi$ (k is	integer)	35. The va		
65.	If the left hand derivative of $f(x) = [x] \sin(\pi x)$ at $x = k$,	is an integer and $[x] = greater$	itest integer $\leq x$	is:		
	(a) $(-1)^k (k-1)\pi$ (b) $(-1)^{k-1} (k-1)\pi$	(c) $(-1)^k - k\pi$	(d) $(-1)^{k-1} k\pi$			
66.	If $f(x) = \frac{x}{1+ x }$ for $x \in \mathbb{R}$, then $= f'(0) =$					
	(a) 0 (b) 1	(c) 2	(d) 3			
67.	f(x) = x - 1 is not differentiable at:					
	(a) 0 (b) 1	(c) ± 1 , 0	$(d) \pm 1$			
68.	Let $f(x)$ is differentiable at $x = 1$ and $\lim_{h \to 0} \frac{1}{h} f(1+h) = 1$	5, then $f'(1)$ equals:				
	(a) 5 (b) 6	(c) 3	(d) 4			
69.	If $f(x)$ is differentiable function such that $f: \mathbb{R} \to \mathbb{R}$ and	$d f\left(\frac{1}{n}\right) = 0 \ \forall \ n \ge 1, \ n \in 1 \ t$	hen	57. If you		
	(a) $f(x) = 0 \ \forall \ x \in (0, 1)$	(b) $f(0) = 0 = f'(0)$				
	(c) $f(0) = 0$ but $f'(0)$ may or may not be 0	(d) $ f(x) \le 1 \ \forall \ x \in (0, 1)$	V (E)			
70.	If $f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2x - 1 & 1 < x \end{cases}$; then	ear to name continue.				
	(a) f is discontinuous at $x = 1$	(b) f is differentiable at $x = x$	= 1			
	(c) f is continuous but not differentiable at $x = 1$	(d) none of these				
71.	The number of points at which the function $f(x) = x $ interval $(0, 2)$ is :	$0.5 + x - 1 + \tan x$ does	not have a deriv	vative in the		
	(a) 1 (b) 2	(c) 3	(d) 4			
72.	If $f(x) = x(\sqrt{x} - \sqrt{x+1})$, then					
	(a) $f(x)$ is continuous but not differentiable at $x = 0$	(b) $f(x)$ is differentiable at $x = 0$				
		(d) none of these				
73.	Function $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is not differentiable for (a) $ x < 1$ (b) $x = 1, -1$					
	(a) $ x < 1$ (b) $x = 1, -1$	(c) $ x > 1$	(d) none of the	ese		
				9		

(b) discontinuous and differentiable

(b) f(x) is continuous but not differentiable

(d) continuous and differentiable

(d) f'(x) exists in (-2, 2)

(c) not continuous at any point in [0, 2](d) not differentiable at any point [0, 2]

(a) continuous but non-differentiable

(a) f(x) is discontinuous everywhere

(c) discontinuous and non-differentiable

62. The function f(x) = |x| at x = 0 is

63. Consider $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

(c) f'(x) exists in (-1, 1)

74.	The set of all those points, v	where the function $f(x) = \frac{1}{1}$	$\frac{x}{+ x }$ is differentiable is:	
	(a) $(-\infty, \infty)$	(b) [0, ∞]	(c) $(-\infty, 0) \cup (0, \infty)$	(d) $(0, \infty)$
75.	The function $f(x) = (x^2 - 1)$	$ x^2 - 3x + 2 + \cos(x)$ is	not differentiable at:	
	(a) -1	(b) 1	(c) 0	(d) 2
76.	If $f(x) = x^2 - 2x + 4$ and $\frac{f}{x}$	$\frac{(5)-f(1)}{5-1}$, then value of c	will be:	
	(a) 0	(b) 1	(c) 2	(d) 3
	$\int 1 \forall x$	< 0		
77.	Let $f(x) = \begin{cases} 1 & \forall x \\ 1 + \sin x & \forall 0 \le x \end{cases}$	$x \le \frac{\pi}{2}$, then what is the value $x \le \frac{\pi}{2}$	alue of $f'(x)$ at $x = 0$?	
	(a) 1	(b) -1	(c) ∞	(d) does not exist
78.	The function which is contin	nuous for all real values of	$\cos x$ and differentiable at x	= 0 is:
	(a) $ x $	(b) $\log x$	(c) $\sin x$	(d) $x^{1/2}$
79.	If $f(x)$ is a differentiable furthen	action such that $f: \mathbb{R} \to \mathbb{R}$	and $f\left(\frac{1}{n}\right) = 0 \ \forall \ n \ge 1, \ n \in$	I I
	(a) $f(x) = 0 \forall \ x \in (0, 1)$)	(b) $f(0) = 0 = f'(0)$	
	(c) $f(0) = 0$ but $f'(0)$ may	or may not be 0	(d) $ f(x) \le I, \ \forall \ x \in (0, 1)$	0.46
80.	Let $f(x) = \begin{cases} \sin x & \text{for } x \\ 1 - \cos x & \text{for } x \end{cases}$			
		≤0	(-) 1	(4) 2
	(a) 1	(6) 0	(c) -1	(d) 2
81.	Let $f(x) = \begin{cases} x+1, & \text{when } x \\ 2x-1, & \text{when } x \end{cases}$	$\stackrel{<}{\geq} 2$, then $f'(2)$		
	(a) 0	(b) 2	(c) 1	(d) does not exists
82.	A function $f(x) = \begin{cases} 1+x, & x \\ 5-x, & x \end{cases}$	$x \le 2$ x > 2 is		
	(a) not continuous at $x =$	2	(b) differentiable at $x = 2$	
	(c) continuous but not diff	ferentiable at $x = 2$	(d) none of these	
83.	If $y = \log \sqrt{\tan \theta}$, then the	value of $\frac{dy}{d\Omega}$ at $\theta = \frac{\pi}{4}$ is:		
	(a) 0	(b) 1	(c) -1	(d) 2
84.	If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x}}}$	then $\frac{dy}{dx}$ is:	or hope shall be melt.	
	<i>2y</i> 1	(b) $\frac{y^2}{\cos x - x}$	(c) $\frac{2y-1}{\cos x}$	(d) $\frac{\cos x}{2y-1}$
85.	The value of $\frac{dy}{dx}$ at $y = 1$ fo	r the function $\sqrt{x} + \sqrt{y} = 2$	is: (-(d)	
	(a) 5	(b) 2	(c) 4	(d) -1
86.	If $y = \frac{x+1}{x-1}$, then the value	of $\frac{dy}{dx}$ is:		Aus ()
	(a) $\frac{-2}{x-1}$	(b) $\frac{-2}{(x-1)^2}$	(c) $\frac{2}{(x-1)^2}$	(d) $\frac{2}{x-1}$

87.	If $x = t^2$ and $y = t^3$, then the	value of $\frac{d^2y}{dx^2}$ is:	ous where us function f(x	
	(a) 1	(b) $\frac{3}{2t}$	(c) $\frac{3}{4t}$	(d) $\frac{3}{2}$
88.	The value of differentiation of	of e^{x^3} w.r.t. x is:		
	(a) e^{x^3}	(b) $3x^2 \cdot 2e^{x^3}$	(c) $3x^3e^{x^3}$	(d) none of these
89.	If $y = \sqrt{x + \sqrt{x + \sqrt{x + \dots}}}$, the	n the value of $\frac{dy}{dx}$ is:		
	(a) $\frac{1}{2-y}$	(b) $\frac{1}{2y-1}$	(c) $\frac{1}{2y+1}$	(d) $\frac{1}{2+y}$
90.	The value of $\frac{dy}{dx}$ if $y = 1 + x$	$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$		
	(a) $y - \frac{x^n}{n!}$	(b) $y + \frac{x^n}{n!}$	(c) $\frac{x^n}{n!}$	(d) $y - 1 - \frac{x^n}{n!}$
91.	If $f(x) = mx + 1$, $x \le \frac{\pi}{2}$ and f	$f(x) = \sin x + n, x > \frac{\pi}{2}$ is cor	ntinuous at $x = \frac{\pi}{2}$, then which	of the following is correct
	(a) $m = 1, n = 0$		(c) $n = \frac{m\pi}{2}$	(d) $m=n=\frac{\pi}{2}$
92.	If $y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$, then the val	ue of $(1-x^2)$ $\frac{d^2y}{dx^2} - 3x \cdot \frac{dy}{dx}$	- <i>y</i> is :	$\frac{\partial}{\partial x} = 0 = (x) \cdot (x)$
	(a) 0	(b) 1	(c) -1	(d) 2
93.	If $f(x + y) = f(x)$. $f(y) \forall x$.	y and f(5) = 2, f'(0) = 3, th	nen $f'(5)$ is:	
	(a) 0	(b) 1	(c) 6	(d) 2
94.	If $x = \frac{1 - t^2}{1 + t^2}$ and $y = \frac{2t}{1 + t^2}$, then $\frac{dy}{dx} = ?$		
	(a) $\frac{-x}{y}$	(b) $\frac{x}{y}$	(c) $\frac{-y}{x}$	(d) $\frac{y}{x}$
95.	If $x = a \cos^3 \theta$ and $y = a \sin^2 \theta$	θ , then $\frac{dy}{dx} = 0$		
	(a) $-3\sqrt{\frac{x}{y}}$	(b) $-3\sqrt{\frac{y}{x}}$	(c) $\sqrt[3]{\frac{y}{x}}$	(d) $\sqrt[3]{\frac{x}{y}}$
96.	If $y = 2^x \ 3^{2x+1}$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$	Caesas to each (b)		
	(a) log 2.log 3	(b) $(\log 18^2)y^2$	(c) (log 18)	(d) y (log 18)
97.	If $y = \tan^{-1}\left(\frac{\sqrt{x} - x}{1 + x^{3/2}}\right)$, then	y'(1) is equal to:		
	(a) 0	(b) $\frac{\sqrt{x}-x}{1+x^{3/2}}$	(c) -1	(d) $-\frac{1}{4}$
98.	If $y = (1 + x) (1 + x^2) (1 + x^2)$	$(x^4) + \dots + (1 + x^{2n})$, then t	he value of $\frac{dy}{dx}$ at $x = 0$ is:	
	(a) 0	(b) -1	(c) 1 dx	(d) 2

(c) e

99. If $\sin y + e^{-x \cos y} = e$, then $\frac{dy}{dx}$ at $(1, \pi)$ is equal to :

(a) $\sin y$

(b) $-x \cos y$

(d) $\sin y - x \cos y$

INPUT TEXT BASED MCQ's

100. If α , β (where $\alpha < \beta$) are the points of discontinuity of the of the function g(x) = f(f(f(x))), where $f(x) = \frac{1}{1-x}$ and $P(a, a^2)$ is any point on xy-plane.

Answer the following questions:

(i) The point of discontinuity of g(x) is:

(a)
$$x = 0, -1$$

(b)
$$x = 1$$
 only

(c)
$$x = 0$$
 only

(d)
$$x = 0$$
, $x = 1$

(ii) The domain of f(g(x)) is :

(a)
$$x \in \mathbb{R}$$

(b)
$$x \in \mathbb{R} - \{0, 1\}$$

(c)
$$x \in \mathbb{R} - \{1\}$$

(d)
$$x \in \mathbb{R} - \{0, 1, -1\}$$

(iii) If point P(a, a^2) lies on the same side as that of (α, β) with respect to line x + 2y - 3 = 0, then

(a)
$$a \in \left(-\frac{3}{2}, 1\right)$$

(b)
$$a \in \mathbb{R}$$

(c)
$$a \in \left(\frac{-3}{2}, 0\right)$$
 (d) $a \in (0, 1)$

(d)
$$a \in (0, 1)$$

(iv) Consider the function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = x, if $x \ge 0$ and $f(x) = -x^2$, if x < 0, then which of the following is correct?

(a) f(x) is continuous everywhere $x \in \mathbb{R}$

(b) f(x) is continuous at x = 0 only

(c) f(x) is discontinuous at x = 0 only

(d) f(x) is discontinuous at every $x \in \mathbb{R}$

(v) The function $f(x) = |x| + \frac{|x|}{x}$ is :

(a) Continuous at the origin

(b) discontinuous at origin because |x| is discontinuous there

(c) discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there. (d) discontinuous at the origin because |x| and $\frac{|x|}{x}$ are discontinuous there

101. Let f(x) be a real valued function, then

• Left hand derivative (LHD) : Lf'(a) = $\lim_{h\to 0} \frac{f(a-h)-f(a)}{-h}$

• Right hand derivative (RHD): $Lf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Also a function f(x) is said to be differentiable at x = a if its LHD and RHD at x = a exits and are equal.

For the function $f(x) = \begin{cases} ax^2 + b &, x < -1 \\ bx^2 + ax + 4 &, x \ge -1 \end{cases}$

Answer the following questions:

(i) The value of a is:

(ii) Find the value of b.

(iii) f(x) is continuous at

(a)
$$x = 1$$

(b)
$$x = 4$$

(c)
$$x = 3$$

(iv) Find the value f'(2):

(v) f'(x) is

(a) continuous at x = 1 only

(b) continuous at x = 2 only

(c) continuous everywhere

(d) discontinuous at x = 1

ANSWERS									
1. (d)	2. (d)	3. (a)	4. (b)	5. (b)	6. (a)	7. (d)	8. (d)	9. (a)	10. (d)
11. (a)	12. (a)	13. (c)	14. (a)	15. (c)	16. (b)	17. (b)	18. (a)	19. (c)	20. (b)
21. (d)	22. (b)	23. (d)	24. (b)	25. (a)	26. (c)	27. (c)	28. (d)	29. (b)	30. (b)
31. (b)	32. (b)	33. (a)	34. (b)	35. (a)	36. (a)	37. (a)	38. (b)	39. (a)	40. (d)
41. (c)	42. (d)	43. (b)	44. (b)	45. (a)	46. (c)	47. (b)	48. (c)	49. (b)	50. (b)
51. (b)	52. (b)	53. (b)	54. (b)	55. (a)	56. (a)	57. (b)	58. (a)	59. (d)	60. (d)
61. (a)	62. (a)	63. (b)	64. (d)	65. (a)	66. (b)	67. (b)	68. (a)	69. (b)	70. (c)
71. (b)	72. (d)	73. (d)	74. (c)	75. (d)	76. (d)	77. (d)	78. (c)	79. (b)	80. (b)
81. (d)	82. (c)	83. (b)	84. (d)	85. (d)	86. (b)	87. (c)	88. (d)	89. (b)	90. (a)
91. (c)	92. (a)	93. (c)	94. (c)	95. (b)	96. (d)	97. (d)	98. (c)	99. (c)	
100. (i)	(c) (ii)	(d) (iii)	(d) (iv)	(a) (v)	(c)				
101. (i)	(b) (ii)	(c) (iii)	(d) (iv)		(c)				

Hints to Some Selected Questions

1. (d)
$$u = f(x) = \frac{1}{x-1}$$
 is discontinuous at $x = 1$

$$y = g(u) = \frac{1}{u^2 + u - 2} = \frac{1}{(u+2)(u-1)}$$
 is discontinuous at $u = -2$ and $u = 1$.
$$u = -2, \Rightarrow \frac{1}{x-1} = u \Rightarrow x = \frac{1}{2}$$
when $u = 1 \Rightarrow \frac{1}{x-1} = 1 \Rightarrow x = 2$

 \therefore Function is discontinuous at three points $x = \frac{1}{2}$, 1, 2

2. (b)
$$f(g(x)) = \frac{1}{\left(\frac{1}{x^2} - 1\right)\left(\frac{1}{x^2} - 2\right)} = \frac{x^4}{\left(1 - x^2\right)\left(1 - 2x^2\right)}$$

f(g(x)) is discontinuous at $x = \pm 1$, $x = \pm \frac{1}{\sqrt{2}}$ and x = 0.

3. (a)
$$f'(x) = (2+x^2)^{1/2} (3+|x|^3)^{1/3} + (1+x)[g(x)]f'(-1) = \sqrt{3} 2^{1/3}$$

5. (b) Let
$$g(x) = f(x) - f(x + 1)$$

 $g(0) = f(0) - f(1)$
 $g(1) = f(1) - f(2)$
 $g(0) + g(1) = 0$, $(g(0))$ and $g(1)$ are of opposite side)
 $f(x) = f(x + 1)$ at least one root in $[0, 1]$

8. (d)
$$y = \sec(\tan^{-1}x)$$

 $\frac{dy}{dx} = \sec(\tan^{-1}x) \tan(\tan^{-1}x) \frac{1}{1+x^2}$
 $\frac{dy}{dx}\Big|_{x=1} = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$.

9. (a)
$$\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a} = \lim_{x \to a} 2x f(a) - a^2 f'(x) = 2a f(a) - a^2 f'(a)$$

10. (d)
$$g'(x) = 2(f(2f(x) + 2)) \left[\frac{d}{dx} \left(f(2f(x) + 2) \right) \right] = 2f(2f(x) + 2) - f'(2f(x) + 2) \cdot (2f'(x))$$

 $g'(0) = 2f(2f(0) + 2) \cdot f'(2f(0) + 2) \cdot (2f'(0)) = 4f(0) \cdot f'(0)(2f(0) = 4(-1)(-1) = 4$

13. (c)
$$f'(x) = \begin{cases} \frac{x}{1-x} & x < 0 \\ \frac{x}{1+x} & x \ge 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{(1-x)^2} & x < 0\\ \frac{1}{(1+x)^2} & x \ge 0 \end{cases}$$

 $\therefore f'(x)$ exists everywhere.

15. (c)
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

:. If a function is differentiable so it is continuous,

$$\lim_{x \to 0} \frac{f(1+h)}{h} = 5 \text{ and hence } f(1) = 0$$

Hence,
$$f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$$
.

16. (b)
$$f(x) = \frac{1 - \tan x}{4x - \pi} = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi} = \frac{1}{2}$$

17. (b)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right| \le \lim_{h \to 0} \left| \frac{(h)^2}{h} \right|$$

$$|f'(x)| \le 0 \Rightarrow f'(1) = 0 \Rightarrow f'(x)$$
 is constant as $f(0) = 0 \Rightarrow f(1) = 0$

18. (a) as
$$f(1) = -2$$
 and $f'(x) \ge 2$, $\forall x \in [1, 6]$

Apply lagrange's mean value theorem, $\frac{f(6) - f(1)}{5} = f'(c) \ge 2$

$$f(6) \ge 10 + f(1)$$

$$f(6) \ge 10 - 2 = 8$$

19. (c)
$$x = e^{y + x}$$

$$\log x = y + x \Rightarrow \log x - x = y \Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1 = \frac{1 - x}{x}$$

20. (b)
$$f'(0) \Rightarrow f'(0 - h) = 1$$

 $f'(0 + h) = 0$

21. (d) If f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} \frac{2 - \sqrt{x + 4}}{\sin 2x} L' \text{ Hospital rule,}$$

$$f(0) = \lim_{x \to 0} \frac{\left(-\frac{1}{2\sqrt{x+4}}\right)}{2\cos 2x} = \frac{-\frac{1}{2\sqrt{4}}}{2\cos 0} = -\frac{1}{8}$$

22. (b)
$$f(x) = \frac{x(x-2)}{x^2 - 4} = \frac{x}{x+2}$$
. Continuous at $x = 2$

$$\lim_{x \to 2} \frac{x}{x+2} = f(2) = f(2) = \frac{1}{2}$$

23. (d)
$$f(x)$$
 is continuous at $x = 2$

$$\lim_{x \to 2} f(x) = f(2) \implies \lim_{x \to 2} (2x + \lambda) = 6 - 4 \implies \lim_{h \to 0} 2(2 - h) + \lambda = 2 \implies 4 + \lambda = 2 \implies \lambda = -2$$

24. (b) Apply L'Hospital rule

$$f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{-1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{1 + x^2}\right)} = \frac{2 - \frac{1}{\sqrt{1}}}{2 + \frac{1}{1}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

25. (a) Apply L'Hospital rule

$$\lim_{x \to 5} f(x) = \lim_{x \to 1^{-}} f(x) = f(1)$$

$$\Rightarrow 5 \times 1 - 4 = 4 \times 1 + 3 \times b \times 1 \Rightarrow b = -1$$

26. (c)
$$\lim_{x \to 5} f(x) - \lim_{x \to 1^+} f(x) = f(1)$$

 $\lim_{h \to 0} 5(1-h) - 2 = \lim_{h \to 0} 2(1+h) + 1 = k \implies k = 3$

27. (c)
$$f\left(\frac{\pi}{2}\right) = \lim_{x \to \pi/2} f(x)$$

$$\lambda = \lim_{x \to \pi/2} \frac{1 - \sin x}{\pi - 2x}$$

Apply L'Hospital rule

$$\lambda = \lim_{x \to \pi/2} \frac{-\cos x}{-2} \Rightarrow \lambda = 0$$

30. (b) LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (-x)^{2} \sin\left(-\frac{1}{x}\right) = 0$$

RHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} x^{2} \sin\left(\frac{1}{x}\right) = 0$$

$$f(0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 0$$

f(x) is continuous at x = 0

31. (b)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x+1)^{\cot x}$$

= $\lim_{x \to 0} f(x) = \lim_{x \to 0} (x+1)^{\cot x} = e^{\lim_{x \to 0} x \cot x} = e^{\lim_{x \to 0} \frac{x}{\tan x}} = e^{1} = e$

33. (a)
$$f(x) = \begin{cases} \sin x & x \ge 0 \\ \sin(-x) & x < 0 \end{cases}$$
$$f'(x) = \begin{cases} \cos x & x \ge 0 \\ -\cos x & x < 0 \end{cases}$$

f(x) is not differentiable at x = 0 and f(x) is a periodic function.

34. (b) LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} x^{2} = 0$$

RHL = $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x^{2} = 0$
 \therefore RHL = LHL

35. (a)
$$f(x) = \begin{cases} x^2 + x & x \ge 0 \\ x^2 - x & x < 0 \end{cases}$$

$$LHL = \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} (-h)^2 + h = 0$$

$$RHL = \lim_{x \to 0^+} f(x) = \lim_{h \to 0} (0 + h) = \lim_{h \to 0} (h)^2 + h = 0$$

$$\therefore RHL = LHL = f(0).$$

36. (a)
$$F(x) = \begin{cases} x.\sin\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $F(0) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$

 \therefore F(x) is continuous on R.

38. (b) f(x) = 1 + |x|, $g(x) = \sin x$ are continuous everywhere. Therefore $f \circ g$ is continuous everywhere. $\Rightarrow 1 + |\sin x|$ is continuous everywhere.

40. (d)
$$f(x) = \begin{cases} 1, & x > 1 \\ x^3, & x < 1 \end{cases}$$

 $f(x)$ is continuous for $x \in \mathbb{R}$ and not differentiable at $x = 1$.

41. (c) Since
$$f(0) = 0$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = f'(0) = k(\text{say})$$

$$f(x) = kx + c \Rightarrow f(x) = kx$$

42. (d)
$$f(3) = 0$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{h \to 0} (3 - h) = \lim_{h \to 0} |3 - h - 3| = 0$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{h \to 0} (3 + h) = \lim_{h \to 0} |3 + h - 3| = 0$$

Hence, it is continuous at x = 3

43. (b)
$$f\left(\frac{\pi}{2}\right) = 3$$
 as $f(x)$ is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \pi/2} \left(\frac{k \cos x}{\pi - 2x}\right) = f\left(\frac{\pi}{2}\right) = \frac{k}{2} = 3 \implies k = 6$$

44. (b) As limit of function is a + b as $x \to 0$, therefore to be continuous at a function, its value must be a + b at $x = 0 \Rightarrow f(0) = a + b$.

46. (c)
$$\lim_{x \to 0} f(x) = f(0) = \lim_{x \to 0} (1+x)^{1/x} = e$$

47. (b)
$$f(x) = \frac{x+1}{(x-3)(x+4)}$$
. Hence the points are (3, -4)

48. (c)
$$f(0^+) = f(0^-) = 2$$
 and $f(0) = 2$. Hence, $f(x)$ is continuous at $x = 0$

49. (b) (i) which
$$0 \le x < 1$$

$$f(x)$$
 doesn't exists as $[x] = 0$, here,

(ii) Also,
$$\lim_{x\to 1^+} f(x)$$
 and $\lim_{x\to 1^-} f(x)$ does not exist.

Hence, f(x) is discontinuous at all integer and also (0, 1)

50. (b)
$$\lim_{x \to 0} f(x) = \frac{\sin^2 ax}{(ax)^2}$$
. $a^2 = a^2$ and $f(0) = 1$

f(x) is discontinuous at x = 0, when $a \ne 0$.

51. (b)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2\sin 2x}{2x \cdot 5} = \frac{2}{5} = k$$

52. (b)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{2\sin^{2} 2x}{(2x)^{2}} \right) 4 = 8$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \sqrt{16 + \sqrt{x} + 4} = 8$$
Hence, $a = 8$

53. (b)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+2)(x^2+4) = 32$$

 $f(2) = 16$

$$\therefore f(x)$$
 is discontinuous at $x = 2$

54. (b)
$$\lim_{x \to -5} f(x) = \frac{(x-2)(x+5)}{(x+5)(x-3)} = \frac{-7}{-8} = \frac{7}{8}$$

55. (a)
$$\lim_{x \to 3^{+}} f(x) = f(3) = \lim_{x \to 5} f(x)$$

 $\lim_{x \to 3^{-}} = 4$ or $\lim_{h \to 0} 3 - h + m = 4$
 $3 + m = 4 \Rightarrow m = 1$

59. (d)

Can seen in graph it is continuous but tangent. is not defined at x = 3.

:. Function is continuous in (0, 2) seen in the graph it is not differentiable

62. (a)
$$f(x)$$
 is continuous at $x = 0$

$$f(x) = |x| = |0| = 0$$

$$f(0+h) = |0+h| = |h|$$

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = -1$$

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(0)}{h} = \lim_{x \to 0^{+}} \frac{|h|}{h} = 1$$

Not differentiable.

65. (a)
$$f(k-0) = \lim_{h \to 0} \frac{[k-h]\sin \pi(k-h) - [k]\sin \pi k}{-h} = \lim_{h \to 0} \frac{(-1)^{k-1}(k-1)\sin \pi h}{-h} = (-1)^k (k-1)\pi$$

66. (b) Let
$$x < 0 \Rightarrow |x| = -x \Rightarrow f(x) = \frac{d}{dx} \left(\frac{x}{1-x}\right)$$

$$[f'(x)]_{x=0} = 1 \text{ again } x > 0 \Rightarrow |x| = x$$

$$f(x) = \frac{d}{dx} \left(\frac{x}{1+x}\right) = \frac{1}{1+x^2} \Rightarrow [f'(x)]_{x=0} = 1$$

$$f'(0) = 1$$

68. (a)
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

 $\lim_{x \to 0} \frac{f(1+h)}{h} = 5$ and hence $f(1) = 0$
Hence, $f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$

69. (b)
$$f(1) = f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = \dots \lim_{x \to 0} \left(\frac{1}{n}\right) = 0$$

Since there are infinitely many points in $x \in ((0, 1))$

where
$$f(x) = 0$$
 and $\lim_{n \to \infty} f\left(\frac{1}{n}\right) = 0 \Rightarrow f(0) = 0$

There are infinitely many points in the neighbourhood of x = 0 such that f(x) remains constant in the neighbourhood of $x = 0 \Rightarrow f'(0) = 0$

71. (b) Function
$$f(x) = |x - 0.5| + |x - 1| + \tan x$$

 $x = 0.5, 1, \frac{\pi}{2} \in (0, 2)$

72. (d) Since the function is defined for $x \ge 0$ i.e., not defined for x < 0. Hence, the function neither continuous nor differentiable at x = 0.

74. (c) Let
$$h(x) = x$$
, $x \in (-\infty, \infty)$
 $g(x) = 1 + |x| x \in (-\infty, \infty)$

Here h is differentiable in $(-\infty, \infty)$ but |x| is not differentiable at x = 0.

Therefore, g is differentiable in $(-\infty, 0) \cup (0, \infty)$ and $g(x) \in 0, x \in (-\infty, \infty)$

$$f(x) = \frac{h(x)}{g(x)} = \frac{x}{1+|x|}$$

It is differentiable in $(-\infty, 0) \cup (0, \infty)$ for x = 0.

75. (d) Since
$$|x|$$
 is not differentiable at $x = 0$,

$$|x^2 - 3x + 2| = (x - 1)(x - 2)$$

It is not differentiable at x = 1 and 2

$$f(x) = (x^2 - 1) |x^2 - 3x + 2| \cos + (|x|)$$
 is not differentiable at $x = 2$.

77. (d)
$$f'(x) = \begin{cases} 0 & \forall x < 0 \\ \cos x & 0 \le x \le \frac{\pi}{2} \end{cases}$$
$$f'(0) = \begin{cases} 0 & x < 0 \\ \cos 0 = 1 \end{cases} \Rightarrow f'(0) \text{ does not exists.}$$

78. (c) Since, $\frac{dy}{dx} = \cos x$ which is defined at x = 0 and no other differentiable coefficient is defined at x = 0

79. (b)
$$f(1) = f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = \dots \lim_{h \to \infty} f\left(\frac{1}{n}\right) = 0$$

 $f(0) = 0$

 $\Rightarrow f(x)$ remains constant in the neighbourhood of $x = 0 \Rightarrow f'(0) = 0$.

80. (b)
$$(g \circ f)(x) = g[f(x)] = g[1 - \cos x] = e^{1-\cos x}$$
, for $x \le 0$
 $(g \circ f)'(x) = e^{1-\cos x} \cdot \sin x$ for $x \le 0$
 $(g \circ f)'(0) = 0$

81. (d)
$$Rf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{4 + 2h - 1 - 3}{h} = 2$$
 and $Lf'(2) = \lim_{h \to \infty} \frac{f(2-h) - f(2)}{-h} = 1$
Thus, $f'(2)$ does not exist

83. (b)
$$y = \log \sqrt{\tan \theta} \implies y = \frac{1}{2} \log \tan \theta = \frac{dy}{d\theta} \implies \frac{1}{2 \tan \theta} \sec^2 \theta \implies \left(\frac{dy}{d\theta}\right)_{\theta = \pi/4} = \frac{1}{2} \times (\sqrt{2})^2 = 1$$

84. (d)
$$y = \sqrt{\sin x + y} \Rightarrow y^2 = \sin x + y$$

 $2y\frac{dy}{dx} = \cos x + 1\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{\cos x}{2y - 1}$

85. (d) At
$$y = 1 \Rightarrow \sqrt{x} + 1 = 2 \Rightarrow \sqrt{x} = 1 \Rightarrow x = 1 \Rightarrow \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -1$$

86. (b)
$$\frac{dy}{dx} = \frac{(x-1)(1)-(x+1)(1)}{(x-1)^2} \Rightarrow \frac{dy}{dx} = \frac{x-1-x-1}{(x-1)^2} = \frac{-2}{(x-1)^2}$$

87. (c)
$$x = t^2$$
, $y = t^3$

$$\frac{dx}{dt} = 2t$$
, $\frac{dy}{dt} = 3t^2 \Rightarrow \frac{dy}{dx} = \frac{3}{2}t \Rightarrow \frac{d^2y}{dx^2} = \frac{3}{2}\frac{dx}{dt} = \frac{3}{2} \cdot \frac{1}{2t} = \frac{3}{4t}$

88. (d)
$$y = e^{x^3} \Rightarrow \frac{dy}{dx} = e^{x^3} (3x^2) = 3x^2 e^{x^3}$$

89. (b)
$$y = \sqrt{x + y} \implies y^2 = x + y \implies 2y \frac{dy}{dx} = 1 + \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{2y - 1}$$

90. (a)
$$\frac{dy}{dx} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{n-1!} \Rightarrow \frac{dy}{dx} + \frac{x^n}{n!} = 1 + x + \frac{x^2}{21} + \dots + \frac{x^n}{n!} \Rightarrow \frac{dy}{dx} = y - \frac{x^n}{n!}$$

91. (c) Since
$$f(x)$$
 is continuous at $x = \frac{\pi}{2}$
So, $\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{+}} f(x) = f(x) \Rightarrow \frac{m\pi}{3} + 1 = \sin\frac{\pi}{2} + n \Rightarrow n = \frac{m\pi}{2}$

92. (a)
$$(1 - x^2) \frac{dy}{dx} - xy = 1$$
 (differentiable first time)
Again differentiate w.r.t. x , we get $(1 - x^2) \frac{d^2y}{dx^2} - 3x \cdot \frac{dy}{dx} - y = 0$

93. (c)
$$f(x + y) = f(x) \times f(y) \Rightarrow f'(x + y) = f'(x) \cdot f(y)$$

Put $x = 0$ and $y = x \Rightarrow f'(x) = f'(0) \cdot f(x) \Rightarrow f'(5) = 3f(5) = 3 \times 2 = 6$

94. (c)
$$\frac{dx}{dt} = \frac{(-2t)(1-t^2)-(1-t^2)(2t)}{(1+t^2)^2} = \frac{-2t+2t^3-2t+2t^3}{(1+t)^2} = \frac{-4t+4t^3}{(1+t^2)^2} = \frac{-4t(1-t^2)}{(1+t^2)^2}$$
$$\frac{dy}{dt} = \frac{2(1+t^2)-2t(2t)}{(1+t^2)^2} = \frac{2+2t^2-4t^2}{(1+t^2)^2} = \frac{2-2t^2}{(1+t^2)^2} = \frac{2(1-t^2)}{(1+t^2)^2} \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-y}{x}.$$

95. (b)
$$\frac{dy}{dx} = -3a\cos^2\theta \sin\theta$$
, $\frac{dy}{dx} = 3a\sin^2\theta\cos\theta \Rightarrow \frac{dy}{dx} = \frac{3a\sin^2\theta\cos\theta}{3a\cos^2\theta\sin\theta} = -\frac{\sin\theta}{\cos\theta} = -\sqrt[3]{\frac{y}{x}}$

97. (d)
$$y = \tan^{-1} \left(\frac{\sqrt{x} - x}{1 + \sqrt{x} \cdot x} \right) = \tan^{-1} \left(\sqrt{x} \right) - \tan^{-1} \left(x \right)$$

Differentiate w.r.t x, we get $\Rightarrow y' = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{1+x^2}$

$$y'(1) = \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} = -\frac{1}{4}$$

99. (c)
$$\cos y \frac{dy}{dx} + e^{-x\cos y} \left[x \sin y \frac{dy}{dx} - \cos y \right] = 0$$

$$(dy) \qquad \cos y e^{-x\cos y} \qquad -1$$

$$\left(\frac{dy}{dx}\right)_{\text{at}(1,\pi)} = \frac{\cos y \, e^{-x\cos y}}{\cos y + x\sin y \, e^{-x\cos y}} = \frac{-1 \times e}{-1 + 0 \times e} = e$$

100. (i) (c)
$$f(x) = \frac{1}{1-x} \Rightarrow f(f(x)) = \frac{x-1}{x} \Rightarrow x \neq 0, 1$$

(ii) (d)
$$g(x) = f(f(f(x))) = x, x \in \mathbb{R} - \{0, 1\} \Rightarrow f(g(x)) = \frac{1}{1 - x} \Rightarrow x \neq 0, 1$$

(iii) (d) From graph
$$a \in \left(\frac{-3}{2}, 1\right)$$

(iv) (a)
$$f(x) = \begin{cases} x & x \ge 0 \\ -x^2 & x < 0 \end{cases}$$

LHL =
$$\lim_{x \to 0^{-}} f(x) = -\lim_{x \to 0} x^{2} = 0$$
; RHL = $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x = 0$ and $f(0) = 0$: it is continuous

(v) (c) since, |x| is discontinuous at x = 0 and $\frac{|x|}{x}$ is discontinuous at x = 0 $f(x) = |x| + \frac{|x|}{x}$ is discontinuous x = 0.

101. (i) (b)
$$f(-1) = \lim_{x \to 1^{-}} f(x) = -\lim_{h \to 0} a(-1-h)^2 + b \implies b - a + 4 = a + b; a = 2$$

101. (i) (b)
$$f(-1) = \lim_{\substack{x \to 1^{-} \\ x \to 1^{-}}} f(x) = -\lim_{\substack{h \to 0 \\ h \to 0}} a(-1-h)^{2} + b \implies b - a + 4 = a + b; \ a = 2$$

(ii) (c) $f(-1) = \lim_{\substack{x \to 1^{-} \\ h \to 0}} f(x) = -\lim_{\substack{h \to 0 \\ h \to 0}} (2a)(-1-h) - 2a \implies 2b(-1) + a = -2a; \ 3a - 2b = 0 \to b = 3$

(iii) (d) since, f'(x) is continuous everywhere, so f(x) is also continuous everywhere.

(iv) (d)
$$f'(x) = 2ax \Rightarrow f'(x) = 4x \Rightarrow f'(x) = 4 \times 2 = 8$$
.

(v) (c) f'(x) is continuous everywhere