Exercise 4.1 Page: 81

Evaluate the following determinants in Exercise 1 and 2.

Question 1. 

Solution
  = 2(-1) – 4(-5) = -2 + 20 = 18

Question 2. (i) 

(ii) 

Solution
(i) 

= (cosθ)(cosθ) – (-sinθ) (sinθ)= cos2 θ + sin2 θ= 1

(ii) 

= (x2 − x + 1)(x + 1) − (x − 1)(x + 1)

x3 − x2 + x + x2 − x + 1 − (x2 − 1)

x3 + 1 − x2 + 1

x3 − x2 + 2

Question 3. If A =  then show that |2A| = 4|A|

Solution
Given: A = 

then 2A = 2 x 

Hence, proved.

Question 4. If A =  then show that 3|A| = 27|A|

Solution
Given: A =  then 3A =3

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C1) for easier calculation.

 

Hence, proved.

Question 5. Evaluate the determinants:

(i) 

(ii) chapter 4-Determinants Exercise 4.1 

(iii) 

(iv)  

Solution
Evaluate the determinants:

(i) Given: 

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

=

(ii) Given: chapter 4-Determinants Exercise 4.1

By expanding along the first row, we have:

=

(iii) Given: 

Expanding along first row,

=

= 0 + 6 – 6 = 0

(iv) Given: 

Expanding along first row,

=

= -10 + 15 = 5

Question 6. If A =  find |A|

Solution
Given:     A = 

Expanding along first row,

=

Question7. Find the value of x if:

(i) 

(ii) 

Solution
(i) Given: 

⇒ 2 x 1 – 5 x 4 = 2x * x – 6 x 4

⇒ 2 – 20 = 2x2 – 24

⇒ 2x= 6

⇒  x= 3

⇒ x = ± √3

(ii) 

⇒ 2 x 5 – 4 x 3 = x * 5 – 2x – 3

⇒10 – 12 = 5x – 6x

⇒ – 2 = -x

⇒ x = 2

Question 8. If  then x is equal to:

(A) 6

(B) ± 6

(C) – 6

(D) 0

Solution
Given: 

⇒x * x – 18 x 2 = 6 x 6 – 18 x 2

⇒x2 – 36 = 36 – 36

⇒x2 – 36 = 0

⇒x = ± 6

Therefore, option (B) is correct.

Exercise 4.2 Page: 83

Question 1. Find the area of the triangle with vertices at the points given in each of the following:

(i) (1, 0), (6, 0), (4, 3)

(ii) (2, 7), (1, 1), (10, 8)

(iii) (−2, −3), (3, 2), (−1, −8)

Solution :

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

=

(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

=

(iii) The area of the triangle with vertices (−2, −3), (3, 2), (−1, −8)

=

Question 2. Show that the points A(a,b + c), B(b, c + a), C(c, a+b) are collinear.

Solution :

Therefore, points A, B and C are collinear.

Question 3. Find values of k if area of triangle is 4 sq. units and vertices are:

(i) (k, 0), (4, 0), (0, 2)

(ii) (−2, 0), (0, 4), (0, k)

Solution :

We know that the area of a triangle whose vertices are (x1y1), (x2y2), and

(x3y3) is the absolute value of the determinant (Δ), where

chapter 4-Determinants Exercise 4.3

When −k + 4 = − 4, k = 8.

When −k + 4 = 4, k = 0.

Hence, k = 0, 8.

(ii) The area of the triangle with vertices (−2, 0), (0, 4), (0, k) is given by the relation,

chapter 4-Determinants Exercise 4.3

k − 4 = ± 4

When k − 4 = − 4, k = 0.

When k − 4 = 4, k = 8.

Hence, k = 0, 8.

Question4. (i) Find the equation of the line joining (1, 2) and (3, 6) using determinants.

(ii) Find the equation of the line joining (3, 1) and (9, 3) using determinants.

Solution
(i) Let P(x, y) be any point on the line joining the points (1, 2) and (3, 6).

Then, Area of triangle that could be formed by these points is zero.

Hence, the equation of the line joining the given points is y = 2x.

(ii) Let P (xy) be any point on the line joining points A (3, 1) and

B (9, 3). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

chapter 4-Determinants Exercise 4.3

Hence, the equation of the line joining the given points is x − 3y = 0.

 

 

 

 

 

Question 5. If area of triangle is 35 square units with vertices (2, −6), (5, 4), and (k, 4). Then k is

(A). 12

(B). −2

(C). −12, −2

(D). 12, −2

Solution :

The area of the triangle with vertices (2, −6), (5, 4), and (k, 4) is given by the relation,

chapter 4-Determinants Exercise 4.3

It is given that the area of the triangle is ±35.

Therefore, we have:

⇒ 25 – 5k = ± 35

⇒ 5(5 – k) = ± 35

⇒ 5 – k = ± 7

When 5 − k = −7, k = 5 + 7 = 12.

When 5 − k = 7, k = 5 − 7 = −2.

Hence, k = 12, −2.

The correct answer is D.

Therefore, option (D) is correct.

Exercise 4.3 Page: 87

Question 1. Write minors and cofactors of the elements of the following determinants:

(i) NCERT Solutions class 12 Maths Determinants

(ii) NCERT Solutions class 12 Maths Determinants

Solution
(i) Let NCERT Solutions class 12 Maths Determinants

Minor of element aij is Mij.

∴M11 = minor of element a11 = 3

M12 = minor of element a12 = 0

M21 = minor of element a21 = −4

M22 = minor of element a22 = 2

Cofactor of aij is Aij = (−1)i + j Mij.

∴A11 = (−1)1+1 M11 = (−1)2 (3) = 3

A12 = (−1)1+2 M12 = (−1)3 (0) = 0

A21 = (−1)2+1 M21 = (−1)3 (−4) = 4

A22 = (−1)2+2 M22 = (−1)4 (2) = 2

(ii) Let NCERT Solutions class 12 Maths Determinants

Minor of element aij is Mij.

∴M11 = minor of element a11 d

M12 = minor of element a12 b

M21 = minor of element a21 c

M22 = minor of element a22 a

Cofactor of aij is Aij = (−1)i + j Mij.

∴A11 = (−1)1+1 M11 = (−1)2 (d) = d

A12 = (−1)1+2 M12 = (−1)3 (b) = −b

A21 = (−1)2+1 M21 = (−1)3 (c) = −c

A22 = (−1)2+2 M22 = (−1)4 (a) = a

Question 2. Write minors and cofactors of the elements of the following determinants:

 

Solution

A11 = cofactor of a11= (−1)1+1 M11 = 1

A12 = cofactor of a12 = (−1)1+2 M12 = 0

A13 = cofactor of a13 = (−1)1+3 M13 = 0

A21 = cofactor of a21 = (−1)2+1 M21 = 0

A22 = cofactor of a22 = (−1)2+2 M22 = 1

A23 = cofactor of a23 = (−1)2+3 M23 = 0

A31 = cofactor of a31 = (−1)3+1 M31 = 0

A32 = cofactor of a32 = (−1)3+2 M32 = 0

A33 = cofactor of a33 = (−1)3+3 M33 = 1

chapter 4-Determinants Exercise 4.4

A11 = cofactor of a11= (−1)1+1 M11 = 11

A12 = cofactor of a12 = (−1)1+2 M12 = −6

A13 = cofactor of a13 = (−1)1+3 M13 = 3

A21 = cofactor of a21 = (−1)2+1 M21 = 4

A22 = cofactor of a22 = (−1)2+2 M22 = 2

A23 = cofactor of a23 = (−1)2+3 M23 = −1

A31 = cofactor of a31 = (−1)3+1 M31 = −20

A32 = cofactor of a32 = (−1)3+2 M32 = 13

A33 = cofactor of a33 = (−1)3+3 M33 = 5

 

 

 

 

 

Question 3. Using cofactors of elements of second row, evaluate:

Solution :

We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

∴Δ = a21A21 + a22A22 + a23A23 = 2(7) + 0(7) + 1(−7) = 14 − 7 = 7

 

 

 

 

 

Question 4. Using cofactors of elements of third column, evaluate:

Solution

 

 

 

Question 5. If ncert solution and Aij is Cofactors of aij, then value of Δ is given by

Solution :

We know that:

Δ = Sum of the product of the elements of a column (or a row) with their corresponding cofactors

∴Δ = a11A11 + a21A21 + a31A31

Hence, the value of Δ is given by the expression given in alternative D.
Option (D) is correct.

Exercise 4.4 Page: 92

Find adjoint of each of the matrices in Exercise 1 and 2.

Question1.

Solution

Question2.

Solution

Question 3.

Verify A (adj A) = (adj AA = |A| I .

Solution

Question 4.

Verify A (adj A) = (adj AA = |A| I .

Solution
Let A =

chapter 4-Determinants Exercise 4.5

Find the inverse of the matrix (if it exists) given in Exercise 5 to 11.

Question 5.

Solution :

Question6.

Solution :

chapter 4-Determinants Exercise 4.5

Question 7.

Solution :

chapter 4-Determinants Exercise 4.5

Question 8.

Solution :

chapter 4-Determinants Exercise 4.5

Question 9.

Solution :

Question 10.

Solution
Let A =

chapter 4-Determinants Exercise 4.5

Question 11.

Solution

Question 12. Let 

Solution

chapter 4-Determinants Exercise 4.5

Question 13. If A =, show that A2 – 5A + 7I = 0. Hence find A-1

Solution

Question 14. For the matrix A = find numbers a and b such that A2 + aA + bI O.

Solution

 

Question 15. For the matrix A =, show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.

Solution

chapter 4-Determinants Exercise 4.5

Question 16. If A =, verify that A3 − 6A2 + 9A − 4I = O and hence find A−1

Solution

chapter 4-Determinants Exercise 4.5

Question 17. Let A be a non-singular matrix of order 3 x 3. Then |adjA| is equal to:

(A) |A|

(B) |A|2

(C) |A|3

(D) 3|A|

Solution

Therefore, option (B) is correct.

Question 18. If A is an invertible matrix of order 2, then det (A−1) is equal to:

(A) det A  

(B) 1/det A

(C) 1   

(D) 0

Solution :

Therefore, option (B) is correct.

Exercise 4.5 Page: 97

Examine the consistency of the system of equations in Exercises 1 to 3.

Question 1.

+ 2= 2

2x + 3= 3

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

∴ A is non-singular.

Therefore, A−1 exists.

Question 2.

2− y = 5

x + = 4

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

∴ A is non-singular.

Therefore, A−1 exists.

Hence, the given system of equations is consistent.

Hence, the given system of equations is consistent.

Question 3.

x + 3y = 5

2x + 6y = 8

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

∴ A is a singular matrix.

NCERT Solutions class 12 Maths Determinants

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Examine the consistency of the system of equations in Exercises 4 to 6.

Question 4.

x + y z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

∴ A is non-singular.

Therefore, A−1 exists.

Hence, the given system of equations is consistent.

Question 5.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question6.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

∴ A is non-singular.

Therefore, A−1 exists.

Hence, the given system of equations is consistent.

Solve the system of linear equations, using matrix method, in Exercise 7 to 10.

Question7.

5x + 2y =4

7x + 3y = 5

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question8.

2x – y = – 2

3x + 4y = 3

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question9.

4x – 3y = 3

3x – 5y = 7

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question10.

5x + 2y = 3

3x + 2y = 5

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Thus, A is non-singular. Therefore, its inverse exists.

Solve the system of linear equations, using matrix method, in Exercise 11 to 14.

Question11.

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question12.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question13.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question14.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12

Solution
Matrix form of given equations is AX = B

NCERT Solutions class 12 Maths Determinants

Question15. If A = chapter 4-Determinants Exercise 4.6 find A−1. Using A−1 solve the system of equations

Solution

Question16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ` 60. The cost of 2 kg onion, 4 kg wheat and 2 kg rice is ` 90. The cost of 6 kg onion, 2 k wheat and 3 kg rice is ` 70. Find cost of each item per kg by matrix method.

Solution :

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y,and Rs z respectively.

Then, the given situation can be represented by a system of equations as:

4x + 3y + 2z = 60

2x + 4y + 6z = 90

6x + 2y + 3z = 70

This system of equations can be written in the form of AX = B, where

NCERT Solutions class 12 Maths Determinants

Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg, and the cost of rice is Rs 8 per kg.

Chapter 4 Miscellaneous

 

 

 

1. Prove that the determinant  is independent of  

Ans. Let 

Expanding along first row,

 

 

  =  =  which is independent of 

2. Without expanding the determinants, prove that: 

Ans. L.H.S. = 

Multiplying R1 by  R2 by  and R3 by  = 

 =  [Interchanging C1 and C3]

 =  [Interchanging C2 and C3]

Proved.

 

 

2. Evaluate:  

Ans. Let 

Expanding along first row,

=

= 1

 

3. If  and B =  find  

Ans. Given:  and B = 

Since,   [Reversal law] ……….(i)

Now 

 = 

Therefore,  exists.

  and  and 

 adj. B =  = 

 

From eq. (i), 

 


4. Let A =  verify that:

(i)    

(ii)  

Ans. Given: Matrix A = 

 

  = 

Therefore,  exists.

  and 

and 

 adj. A =  = B (say)

  =            ………(i)

 

 = 

Therefore,  exists.

  and 

and 

 adj. B =  = 

 

 ….(ii)

Now to find  (say), where

C = 

C = 

C =  =  =

Therefore,  exists.

  and 

and 

 adj. A = 

 ……….(iii)

Again 

 = A (given)

(i) 

 = 

[From eq. (ii) and (iii)]

(ii) 

  = 

5. Evaluate:  

Ans. Let 

 

 

6. Evaluate:  

Ans. Let 

 

 =  = 

 

7. Solve the system of the following equations: (Using matrices):

 

Ans. Putting  and  in the given equations,

  

 the matrix form of given equations is  [AX= B]

Here,   A =  X =  and B = 

 

  exists and unique solution is  ……….(i)

Now     and 

and 

 adj. A =  = 

And 

 From eq. (i),

 

 

 

 

8. If  are non-zero real numbers, then the inverse of matrix A =  is:

(A) 

(B)  

(C) 

(D)  

Ans. Given: Matrix A = 

 

 

  exists and unique solution is  ……….(i)

Now     and  and 

 adj. A =  = 

And 

Therefore, option (A) is correct.

 

9. Let A =  where  Then:

(A) Det (A) = 0 

(B) Det (A)   

(C) Det (A)  

(D) Det (A) 

Ans. Given: Matrix A = 

 

 

  ……….(i)

Since   

  [  cannot be negative]

 

 

 

Therefore, option (D) is correct.